Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Effects of Pb, Cd, Zn, and Cu on soil enzyme activity and soil properties related to agricultural land-use practices in karst area contaminated by Pb-Zn tailings


Warianty tytułu

Języki publikacji



In order to study the impact of Pb, Cd, Zn, and Cu released by Pb-Zn tailings on soil enzymes and soil properties involving soil carbon and nitrogen cycle processes, 32 soil samples were collected from 2 different types of agricultural fields (one for growing corn and one for growing rice) contaminated by Pb-Zn tailings close to Sidi village in southwestern China. The results revealed that the paddy fields were seriously contaminated by Pb-Zn tailings compared with cornfields. Under the Pb-Zn tailings contamination, the population of fungi and actinomycetes as well as the activities of the soil enzymes (urease, invertase, and cellulase) in cornfields were significantly higher than those in the paddy fields. In addition, the results from path analysis showed that urease, invertase, and acid phosphatase were negatively correlated with DTPA-extractable Cd, Pb, and Zn (the direct path coefficients were -0.336, -0.314, and -0.591, respectively). Soil microorganisms and enzyme activities involving soil organic carbon and nitrogen decomposition and stabilization were decreased due to the toxic Pb-Zn tailings. Therefore, soil organic carbon and total nitrogen accumulate and an “elusive” carbon and nitrogen pool forms in the paddy fields compared with cornfields in the Pb-Zn tailings-contaminated karst area.

Słowa kluczowe








Opis fizyczny



  • Key Laboratory of Karst Dynamics, MLR&GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
  • International Research Center on Karst under the Auspices of UNESCO, Guilin, China
  • Key Laboratory of Karst Dynamics, MLR&GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
  • School of the Environment, Guangxi University, Nanning, China
  • School of the Environment, Guangxi University, Nanning, China
  • Environmental Science and Engineering College, Guilin University of Technology, Guilin, China


  • 1. Concas A., Ardau C., Cristini A., Zuddas P., Cao G. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere 63 (2), 244, 2006.
  • 2. Rao M.A., Scelza R., Acevedo F., Diez M.C., Gianfreda L. Enzymes as useful tools for environmental purposes. Chemosphere 107, 145, 2014.
  • 3. Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 83, 184, 2015.
  • 4. Daniela F.C., Whendee L.S., Margaret S.T., Sarah D.B., Mary K.F. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92 (3), 621, 2011.
  • 5. Wallenius K., Rita H., Mikkonen A., Lappi K., Lindstr öm K., Hartikainen H., Raateland A., Niemi R.M. Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities. Soil Biol. Biochem. 43 (7), 1464, 2011.
  • 6. Hu Q.J., Zhang C.L., Jin Z.J., Cao J.H., Li Q. Canonical correspondence analysis for soil properties and heavy metal pollution from Pb-Zn mine tailings in different land use types. Rock Min. Anal. 33 (5), 714, 2014 (In Chinese with English abstract).
  • 7. Li Q., Hu Q.J., Zhang C.L., Jin Z.J., Cao J.H. Assessment on heavy metals in the Pb-Zn mine tailings dam collapse area based on total enzyme activity index. Ecol. Environ. 23 (11), 1839, 2014. (In Chinese with English abstract).
  • 8. Li Q., Li Z.Y., Jin Z.J., Luo K., Tang Z.Q., Huang J.Y., Lu W.T. Relationships between soil and environment in pollution of agricultural soils from a tailing spill at a Pb-Zn mine based on canonical correspondence analysis. Geol. Rev. 60 (2), 443, 2014 (In Chinese with English abstract).
  • 9. Chen J., He F., Zhang X., Sun X., Zheng J., Zheng J. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol. Ecol. 87 (1), 164, 2014.
  • 10. Xu X., Zhang Z., Hu S., Ruan Z., Jiang J., Chen C., Shen Z. Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation. Environ. Sci. Pollut. R. 24 (1), 666, 2017.
  • 11. Ciarkowska K., Sołek -Podwika K., Wieczorek J. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. J. Environ. Manage. 132, 250, 2014.
  • 12. Li Q, Hu Q.J., Zhang C.L., Müller W.E., Schröder H.C., Li Z.Y., Jin Z.J. The effect of toxicity of heavy metals contained in tailing sands on the organic carbon metabolic activity of soil microorganisms from different land use types in the karst region. Environ. Earth Sci. 74 (9), 6747, 2015.
  • 13. Jin Z., Li Z., Li Q., Hu Q., Yang R., Tang H., Li G. Canonical correspondence analysis of soil heavy metal pollution, microflora and enzyme activities in the Pb–Zn mine tailings dam collapse area of Sidi Village, SW China. Environ. Earth Sci. 73 (1), 267, 2015.
  • 14. Jalali M., Arfania H. Distribution and fractionation of cadmium, copper, lead, nickel, and zinc in a calcareous sandy soil receiving municipal solid waste. Environ. Monit. Assess. 173 (1), 241, 2011.
  • 15. Li Z., Jin Z., Li Q. Changes in land use and their effects on soil properties in Huixian karst wetland system. Pol. J. Environ. Stud. 26 (3), 699, 2017.
  • 16. López R., Burgos P., Hermoso J.M., Hormaza J.I., González -Fernández J.J. Long term changes in soil properties and enzyme activities after almond shell mulching in avocado organic production. Soil Till. Res. 143, 155, 2014.
  • 17. Jin Z.J., Li Q., Hhuang J.Y., Deng L.J., Lu W.T., Huang M.H., Tang Z.Q., Tang X.Z., Luo K., Yang S., Wu Q.M. Relationship among soil organic carbon, enzyme activities and microbial numbers in typical karst ecosystem: A case study of Yaji karst experimental site, China. J. Agro-Environ. Sci. 32 (2), 307, 2013. (In Chinese with English abstract).
  • 18. Shipley B. Cause and correlation in biology: A user’s guide to path analysis, structural equations and causal inference with R. Cambridge University Press: United Kingdom, 2016.
  • 19. Zhao K.L., Liu X.M., Xu J.M., Selim H.M. Heavy metal contaminations in a soil–rice system: Identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard. Mater. 181 (1), 778, 2010.
  • 20. Thavamani P., Malik S., Beer M., Megharaj M., Naidu R. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J. Environ. Manage. 99, 10, 2012.
  • 21. Zhang X., Dong W., Dai X., Schaeffer S., Yang F., Radosevich M., Sun X. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer. Sci. Total Environ. 536, 59, 2015.
  • 22. Gopal M., Gupta A., Arunachalam V., Magu S.P. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Bioresource Technol. 98 (16), 3154, 2007.
  • 23. Wu D., Wang Q., Assary R.S., Broadbelt L.J., Krilov G. A computational approach to design and evaluate enzymatic reaction pathways: Application to 1-butanol production from pyruvate. J. Chem. Inf. Model. 51 (7), 1634, 2011.
  • 24. Rodríguez-Caballero G., Caravaca F., Alguacil M.M., Fernández-López M., Fernández-González A.J., Roldán A. Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biol. Biochem. 109, 176, 2017.
  • 25. Bárta J., Šlajsová P., Tahovská K., Picek T., Šantrůčková H. Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry 117 (2-3), 525, 2014.
  • 26. Utobo E.B., Tewari L. Soil enzymes as bioindicators of soil ecosystem status. Appl. Ecol. Env. R. 13 (1), 147, 2015.
  • 27. Jien S.H., Wang C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110, 225, 2013.
  • 28. Van-Oort F., Thiry M., Foy E., Fujisaki K., Delarue G., Dairon R., Jongmans T. Impacts of one century of wastewater discharge on soil transformation through ferrolysis and related metal pollutant distributions. Sci. Total Environ. 590, 1, 2017.
  • 29. Taylor J.P., Wilson B., Mills M.S., Burns R.G. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 34 (3), 387, 2002.
  • 30. Chaerun S.K., Pangesti N.P.D., Toyota K., Whitman W.B. Changes in microbial functional diversity and activity in paddy soils irrigated with industrial wastewaters in Bandung, West Java Province, Indonesia. Water Air Soil Poll. 217 (1-4), 491, 2011.
  • 31. Olaniran A.O., Balgobind A., Pillay B. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int. J. Mol. Sci. 14 (5), 10197, 2013.
  • 32. Yang J.Y., He Z.L., Yang X.E., Li T.Q. Effect of lead on soil enzyme activities in two red soils. Pedosphere 24 (6), 817, 2014.
  • 33. Pandey V.R., Singh P.K., Verma O.P., Pandey P. Inter-relationship and path coefficient estimation in rice under salt stress environment. Int. J. Agric. Res. 7 (4), 169, 2012.
  • 34. Nadeem S.M., Ahmad M., Zahir Z.A., Javaid A., Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32 (2), 429, 2014.
  • 35. Chambergo F.S., Valencia E.Y. Fungal biodiversity to biotechnology. Appl. Microbiol. Biot. 100 (6), 2567, 2016.
  • 36. Bonfante P., Genre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48, 2010.
  • 37. Zhang H., Ziegler W., Han X., Trumbore S., Hartmann H. Plant carbon limitation does not reduce nitrogen transfer from arbuscular mycorrhizal fungi to Plantago lanceolata. Plant soil 396 (1-2), 369, 2015.
  • 38. He S., He Z., Yang X., Stoffella P.J., Baligar V.C. Chapter four-soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. Adv. Agron. 134, 135, 2015.
  • 39. LI Q., Jin Z.J. Perspectives on karst biogeochemistry. Carsol. Sin. 35 (4), 349, 2016. (In Chinese with English abstract).

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.