PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Adsorption of acid red 88 anionic dye from aqueous solution onto ZnO/ZnMn2O4 nanocomposite: equilibrium, kinetics, and thermodynamics

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The adsorption of acid red 88 (AR88) anionic dye onto ZnO/ZnMn₂O₄ nanocomposite (ZnMn-NC) prepared by the hydrothermal method was carried out. The adsorbent was characterized by means of XRD, SEM, HRTEM, Raman spectroscopy, FTIR, BET, and zeta potential measurements. We investigated the influence of dye initial concentration, temperature, and pH on AR88 adsorption onto ZnMn-NC. Equilibrium data were analyzed by model equations such as Langmuir and Freundlich isotherms and were best represented by the Freundlich isotherm model. The experimental kinetic data were analyzed using pseudo first-order, pseudo second-order, and intraparticle diffusion kinetic models. The adsorption kinetics was best fitted to the pseudo second-order kinetic model. Thermodynamic parameters, change in free energy ΔGº, enthalpy ΔHº, and entropy ΔSº were also evaluated, indicating the spontaneous and exothermic character of the adsorption of AR88 onto ZnMn-NC.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2585-2593,fig.,ref.

Twórcy

autor
  • Department of Environmental Protection, Maritime University of Szczecin, H. Poboznego St. 11, 70-507 Szczecin, Poland
autor
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, Szczecin, 70-322, Pulaskiego St. 10, Poland
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, Szczecin, 70-322, Pulaskiego St. 10, Poland

Bibliografia

  • 1. ATIMTAY A.T., SIKDAR S.K. Security of Industrial Water Supply and Management, Springer Science+Business Media B.V., 2011.
  • 2. JAIN R., SHRIVASTAVA M. Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide. J. Hazard. Mater. 152, 216, 2008.
  • 3. SALEM I.A., EL-MAAZAWI M. Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalysed by some supported alumina surfaces. Chemosphere 41, 1173, 2000.
  • 4. KASPERCHIK V.P., YASKEVICH A.L., BIL’DYUKEVICH A.V. Wastewater treatment for removal of dyes by coagulation and membrane processes. Petroleum Chemistry 52, 545, 2012.
  • 5. KORBAHTI B.K., ARTUT K., GEÇGEL C., ÖZER A. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. Chem. Eng. J. 173, 677, 2011.
  • 6. SUN D., ZHANG X., WU Y., LIU X. Adsorption of anionic dyes from aqueous solution on fly ash. J. Hazard. Mater. 181, 335, 2010.
  • 7. AMIN N.K. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. J. Hazard. Mater. 165, 52, 2009.
  • 8. KONICKI W., PEŁECH I., MIJOWSKA E., JASINSKA I. Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe₃C nanocomposite: Kinetics, equilibrium and thermodynamics. Chem. Eng. J. 210, 87, 2012.
  • 9. WANG L., LI J., WANG Y., ZHAO L., JIANG Q. Adsorption capability for Congo red on nanocrystalline MFe₂O₄ (M = Mn, Fe, Co, Ni) spinel ferrites. Chem. Eng. J. 181-182, 72, 2012.
  • 10. RAMESHA G.K., VIJAYA KUMARA A., MURALIDHARA H.B., SAMPATH S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 361, 270, 2011.
  • 11. TAHIR S.S., RAUF N. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 63, 1842, 2006.
  • 12. DOGAN M., ABAK H., ALKAN M. Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. J. Hazard. Mater. 164, 172, 2009.
  • 13. MOUSSAVI G., KHOSRAVI R. The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste. Chem. Eng. Res. Des. 89, 2182, 2011.
  • 14. KIM S.W., LEE H.W., MURALIDHARAN P., SEO D.H., YOON W.S., KIM D.K., KANG K. Electrochemical performance and ex situ analysis of ZnMn₂O₄ nanowires as anode materials for lithium rechargeable batteries. Nano Res. 4, 505, 2011.
  • 15. ZHAO L., LI X., ZHAO J. Fabrication, characterization and photocatalytic activity of cubic-like ZnMn₂O₄. Appl. Surf. Sci. 268, 274, 2013.
  • 16. JAVED Q.U., WANG F., TOUFIQ A.M., RAFIQ M.Y., IQBAL M.Z., KAMRAN M.A. Preparation, characterizations and optical property of single crystalline ZnMn₂ O₄ nanoflowers via template-free hydrothermal synthesis. J. Nanosci. Nanotechnol. 13 (4), 2937, 2013.
  • 17. MENAKA M.Q., LOFLAND S.E., RAMANUJACHARY K.V., GANGULI A.K. Magnetic and photocatalytic properties of nanocrystalline ZnMn₂O₄. Bull. Mater. Sci. 32, 231, 2009.
  • 18. COURTEL F.M., ABU-LEBDEH Y., DAVIDSON I.J. ZnMn₂O₄ nanoparticles synthesized by a hydrothermal method as an anode material for Li-ion batteries. Electrochim. Acta 71, 123, 2012.
  • 19. CHOI S.H., KANG Y.C. Characteristics of ZnMn₂O₄ Nanopowders Prepared by Flame Spray Pyrolysis for Use as Anode Material in Lithium Ion Batteries. Int. J. Electrochem. Sci. 8, 6281, 2013.
  • 20. BAI Z., FAN N., SUN C., JU Z., GUO C., YANG J., QIAN Y. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries. Nanoscale 21, 2442, 2013.
  • 21. FERRARIS G., FIERRO G., JACONO M.L., INVERSI M., DRAGONE R. A study of the catalytic activity of cobalt–zinc manganites for the reduction of NO by hydrocarbons. Appl. Catal. B 36, 251, 2002.
  • 22. HENG Y.Z., BIN G., XU Z.C., TENG L. Preparationof ZnMn₂O₄ nano-catalyst and its application in synthesizing n-butyl acetate. Chin. J. Appl. Chem. 26, 1315, 2009.
  • 23. BO W.H., YI C.F., LIANG T.Z., JING L. , JUN C. Room-temperature Synthesis and Oxygen-reduction Catalytic Performance of Hollow ZnMn₂O₄ Nanospheres and Nanocubes. Chem. J. Chinese U. 32, 595, 2011.
  • 24. SORITA R., KAWANO T. A highly selective CO sensor: Screening of electrode materials. Sensor. Actuat. B-Chem. 36, 274, 1996.
  • 25. GAO Y., ZHENG M., PANG H. Achieving High-Performance Supercapacitors by Constructing Porous Zinc–Manganese Oxide Microstructures. Energy Technol. 3, 820, 2015.
  • 26. GUILLEMET-FRITSCH S., CHANEL C., SARRIAS J., BAYONNE S., ROUSSET A., ALCOBE X., MARTINEZ SARRION M.L. Structure, thermal stability and electrical properties of zinc manganites. Solid State Ionics 128, 233, 2000.
  • 27. HADZIC B., ROMCEVIC N., ROMCEVIC M., KURYLISZYN-KUDELSKA I., DOBROWOLSKI W., NARKIEWICZ U., SIBERA D. Raman study of surface optical phonons in hydrothermally obtained ZnO(Mn) nanoparticles. Opt. Mater. 58, 317, 2016.
  • 28. SHAH A.H., MANIKANDAN E., BASHEER AHMED M., GANESAN V. Enhanced Bioactivity of Ag/ZnO Nanorods-A Comparative Antibacterial Study. J. Nanomed. Nanotechol. 4, 1, 2013.
  • 29. BASTAMI T.R., ENTEZARI M.H. A novel approach for the synthesis of superparamagnetic Mn₃O₄ nanocrystals by ultrasonic bath. Ultrason. Sonochem. 19, 560, 2012.
  • 30. STOBINSKI L., LESIAK B., KOVER L., TOTH J., BINIAK S., TRYKOWSKI G., JUDEK J. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Compd. 501, 77, 2010.
  • 31. TAN X., ZHAO Y., LI G., HU C. Effect of calcination temperature on the structure and hydroxylation activity of Ni₀.₅Cu₀.₅Fe₂O₄ nanoparticles. Appl. Surf. Sci. 257, 6256,2011.
  • 32. CHEN J., HUA ZHU Z., MAA Q., LI L., RUDOLPH V., QING LU G. Effects of pre-treatment in air microwave plasma on the structure of CNTs and the activity of Ru/CNTs catalysts for ammonia decomposition. Catal. Today 148, 97, 2009.
  • 33. LI L., LIU S., ZHU T. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. J. Environ. Sci. 22(8), 1273, 2010.
  • 34. WEBER W.J., MORRIS J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31, 1963.
  • 35. DOGAN M., KARAOGLU M.H., ALKAN M. Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite. J. Hazard. Mater. 165, 1142, 2009.
  • 36. MA T., CHANG P.R., ZHENG P., ZHAO F., MA X. Fabrication of ultra-light graphene-based gels and their adsorption of methylene blue. Chem. Eng. J. 240, 595, 2014.
  • 37. LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361, 1918.
  • 38. FREUNDLICH H. Concerning adsorption in solutions. Zeitschrift fur physikalische Chemie 57, 385, 1906.
  • 39. MOHAN S.V., SAILAJA P., SRIMURALI M., KARTHIKEYAN J. Color Removal of Monoazo Acid Dye from Aqueous Solution by Adsorption and Chemical Coagulation. Environ. Eng. Policy 1 (3), 149, 1999.
  • 40. KONICKI W., PEŁECH I., MIJOWSKA E., JASIŃSKA I. Adsorption Kinetics of Acid Dye Acid Red 88 onto Magnetic Multi-Walled Carbon Nanotubes-Fe₃C Nanocomposite. Clean 42 (3), 284, 2014.
  • 41. Padmesh T.V.N., Vijayaraghavan K., Sekaran G., Velan M. Application of Two- and Three-Parameter Isotherm Models: Biosorption of Acid Red 88 onto Azolla microphylla. Biorem. J. 10, 37, 2006.
  • 42. PADMESH T.V.N., VIJAYARAGHAVAN K., SEKARAN G., VELAN M. Application of Azolla rongpong on Biosorption of Acid Red 88, Acid Green 3, Acid Orange 7 and Acid Blue 15 from Synthetic Solutions. Chem. Eng. J. 122 (1), 55, 2006.
  • 43. PADMESH T.V.N., VIJAYARAGHAVAN K., SEKARAN G., VELAN M. Batch and Column Studies on Biosorption of Acid Dyes on Fresh Water Macro Alga Azolla filiculoides. J. Hazard. Mater. 125 (1-3), 121, 2005.
  • 44. XING T., KAI H., CHEN G. Study of Adsorption and Desorption Performance of Acid Dyes on Anion Exchange Membrane. Color. Technol. 128, 295, 2012.
  • 45. AKAR S.T., ALP T., YILMAZER D. Enhanced Adsorption of Acid Red 88 by an Excellent Adsorbent Prepared from Alunite. J. Chem. Technol. Biotechnol. 88, 293, 2012.
  • 46. AKAR S.T., UYSAL R. Untreated Clay with High Adsorption Capacity for Effective Removal of C.I. Acid Red 88 from Aqueous Solutions: Batch and Dynamic Flow Mode Studies. Chem. Eng. J. 162 (2), 591, 2010.
  • 47. LIMA E.C., ROYER B., VAGHETTI J.C.P., SIMON N.M., DA CUNHA B.M., PAVAN F.A., BENVENUTTI E.V., VESES R.C., AIROLDI C. Application of Brazilian-pine fruit coat as a biosorbent to removal of reactive red 194 textile dye from aqueous solution. Kinetics and equilibrium study. J. Hazard. Mater. 155, 536, 2008.
  • 48. KARAGOZ S., TAY T., UCAR S., ERDEM M. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technol. 99, 6214, 2008.
  • 49. CHATTERJEE S., WOO S.H. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 164, 1012, 2009.
  • 50. CRINI G., BADOT P.-M. Sorption processes and pollution. Conventional and non-conventional sorbents for pollutant removal from wastewaters, Presses universitaires de Franche-Comté, France, 2010.
  • 51. GARCIA E.R., MEDINA R.L., LOZANO M.M., PÉREZ I.H., VALERO M.J., FRANCO A.M.M. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron-Benzenetricarboxylate. Materials 7, 8037, 2014.
  • 52. AMRHAR O., NASSALI H., ELYOUBI M.S. Adsorption of a cationic dye, Methylene Blue, onto Moroccan Illitic Clay. J. Mater. Environ. Sci. 6 (11), 3054, 2015.
  • 53. HUANG C.H., CHANG K.P., OU H.D., CHIANG Y.C., WANG C.F. Adsorption of cationic dyes onto mesoporous silica. Micropor. Mesopor. Mat. 141, 102, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e7f793f9-4c21-48a4-997e-33f83f81a424
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.