PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 5 |

Tytuł artykułu

The use of granular iron -based sorption materials for nickel removal from water

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Removal of nickel from water using granular iron-based adsorption materials Bayoxide E33, CFH12, CFH18, and GEH, and the comparison of their efficiency at different pH values was investigated. The results proved that the iron-based sorption materials have a capacity to reduce the content of nickel in water to values that meet the requirements set under the Regulation of the Government of the Slovak Republic No. 496/2010 on drinking water (20 µg/L Ni). This maximum contaminant limit (MCL) complies with the recommendations of WHO, the US EPA, and EU Directive 2008/105/EC. Based on the pilot column tests, the most suitable adsorbent for nickel removal is Bayoxide E33. However, its effectiveness increases with decreasing water pH. For this material it is better to treat the water at lower pH, i.e. 6.5 to 7.5. According to the model tests (concentration of nickel in raw water of about 50 µg/L, filtration rate 5.8 m/hour, concentration Ni 20 µg/L at the outlet of media with the height of 58 cm, pH 7.0), the adsorption capacity of nickel for Bayoxide E33 was set to 198 µg/g and ratio V/V₀ = 4808. The results proved that the materials CFH12, CFH18 and GEH can also be used to decrease the concentration of Ni in drinking water below the limit value. The pH value of water affects the efficiency of nickel removal. In the case of CFH 12 the best results were obtained at pH 7. The highest efficiency of GEH was reached in water pH above 7.5. The adsorption capacities and V/V₀ ratio are lower for these sorption materials. Chemical composition of used sorption materials was determined.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

5

Opis fizyczny

p.1229-1236,fig.,ref.

Twórcy

autor
  • Department of Sanitary and Environmetal Engineering, Faculty of Civil Engineering, Slovak University of Technology,Radlinskeho 11, 813 68 Bratislava, Slovakia
autor

Bibliografia

  • 1. KOŽÍŠEK F., NĚMCOVÁ V., GARI D.W., JELIGOVÁ D. Evaluation of Health Risk of Nickel in Drinking Water. In: Program COST 1715/2007-32. Ostrava, pp. 1-10, 2010 [In Czech].
  • 2. WHO. Nickel in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. WHO/SDE/WSH/05.08/55. Geneva 2005.
  • 3. IPCS. Nickel. International Program on Chemical Safety (Environmental Health Criteria 108). WHO Press: Geneva, 1991.
  • 4. WHO Guidelines for Drinking-Water Quality. 4th ed. WHO Press: Geneva, pp. 396-397, 2011.
  • 5. Council Directive 98/83/EC (1998), Quality of water intended for human consumption.
  • 6. MOHAN D., PITTMAN C.U. Jr. Arsenic removal from water/wastewater using adsorbents - A critical review J. Hazard. Mater. 142, 1, 2007.
  • 7. BAILEY S.E., OLIN T.J., BRICKA R.M., ADRIAN D.D. A review of potentially low - cost sorbents for heavy metals. Water Research, 33, 2469,1999.
  • 8. ARGUN M.E. Use of clinoptilolite for the removal of nickel ions from water: Kinetics and thermodynamics. J. Hazard. Mater. 150, 587, 2008.
  • 9. WESTERHOFF P., BENN T., CHEN A., WANG L., CUMMING L. Assesing arsenic removal by metal (hydr)oxide adsorptive media using rapid small Scale Column Test. EPA/600/R-08/051, 2008.
  • 10. STRNADOVÁ N., MATĚJKOVÁ D. Utilization of sorption materials for removal of As and Ni from water. Acta Montanistica Slovaca 10, 263, 2005 [In Czech].
  • 11. GUAN X.H., WANG J., CHUSSUEI C.C. Removal of arsenic from water using granular ferric hydroxide: Macroscopic and microscopic studies. J. Hazard. Mater. 156, 178, 2008.
  • 12. BARLOKOVÁ D., ILAVSKÝ J. Removal of arsenic and antimony from water. Vodni hospodarstvi 59, 45, 2009 [In Slovak].
  • 13. DELIYANNI E.A., PELEKA E.N., MATIS K.A. Removal of zinc ion from water by sorption onto iron-based nanoad-sorbent. J. Hazard. Mater. 141, 176, 2007.
  • 14. NGUYEN V.L., CHEN W.H., YOUNG T., DARBY J. Effect of interferences on the breakthrough of arsenic: Rapid small scale column tests. Water Res. 45, 4069, 2011.
  • 15. ZENG H., ARASHIRO M., GIAMMAR D. Effect of water chemistry and flow rate on arsenate removal by adsorption to an iron-based sorbent. Water Res. 42, 4629, 2008.
  • 16. BATHNAGAR A., CHOI Y., YOON Y., SHIN Y., JEON B.H., KANG J.W. Bromate removal from water by granular ferric hydroxide. J. Hazard. Mater. 170, 134, 2009.
  • 17. BADRUZZAMAN M., WESTERHOFF P., KNAPPE D.R.U. Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide. Water Res. 38, 4002, 2004.
  • 18. SAHA B., BAINS R., GREENWOOD F. Physicochemical characterization of granular ferric hydroxide (GEH) for arsenic(V) sorption from water, Sep. Sci. Technol. 40, 2909, 2005.
  • 19. DELIYANNI E.A., PELEKA E.N., MATIS K.A. Modeling the sorption of metal ions from aqueous solution by iron- based adsorbents. J. Hazard. Mater. 172, 550, 2009.
  • 20. CUMMING L.J., WANG L., CHEN A.S.C. Arsenic and Antimony Removal from Drinking Water by Adsorptive Media, EPA Demonstration Project at South Truckee Meadows General Improvement District, EPA/600/R- 07/081,2007.
  • 21. KHANDAKER N.R., KRUMHANSL J., NEIDEL L., SIEGEL M. Performance evaluation of ALCAN-AAFS- 50 ferric coated activated alumina and granular ferric hydroxide (GFH) for arsenic removal in the presence of competitive ions in an active well: Kirtland field trial- initial studies. SAND2005-7693. Sandia National Laboratories, 2006.
  • 22. SPERLICH A., WERNER A., GENZ A., AMY G., WORCH E., JEKEL M. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches. Water Res. 39, 1190, 2005.
  • 23. CHEN A.S.C., WANG L., OXENHAM J.L., CONDIT W.E. Capital costs of arsenic removal technologies; U.S. EPA arsenic removal technologies demonstration program round 1. EPA 68-C-00-185. US EPA, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, Ohio, 2004.
  • 24. Severn Trent Services: http://www.severntrentservices.com/en_us/Literature Downloads/Documents/565_0200.pdf, 2012.
  • 25. NAEEM A., WESTERHOFF P., MUSTAFA S. Vanadium removal by metal (hydr)oxide adsorbents. Water Res. 41, 1596, 2007.
  • 26. BACKMAN B., KETTUNEN V., RUSKEENIEMI T., LUOMA S., KARTTUNEN V. Arsenie removal from groundwater and surface water - Field tests in the Pirkanmaa Region, Finland. Geological Survey of Finland, Espoo, 1-40, 2007.
  • 27. THIRUNAVUKKARASU O.S., VIRARAGHAVAN T., SUBRAMANIAN V. Arsenic removal from drinking water using granular ferric hydroxide. Water SA 29, 161, 2003.
  • 28. Kemwater ProChemie: http://www.prochemie.cz/chem/tech-list-hydroxid-zelezity- kemira-cfh.pdf, 2012.
  • 29. GEH-Wassechemie: http://www.geh-wasserchemie.de/files/ datenblatt_geh 10 l_en_web.pdf, 2012.
  • 30. DRIEHAUS W., JEKEL M., HILDEBRANDT U. Granular Ferric Hydroxide - A New Adsorbent for the Removal of Arsenic from Natural Water. J. Water Supply Res. and Technol.-Aqua, 47, 30,1998.
  • 31. WESTERHOFF P., HIGHFIELD D., BADRUZZAMAN M., YOON Y. Rapid small scale column tests for arsenate removal in iron oxide packed bed columns. J. Environ. Eng. 131, 262, 2005.
  • 32. BISSEN M., FRIMMEL F.H. Arsenic - A Review; Part II: Oxidation of Arsenic and its removal in water treatment. Acta hydrochim. hydrobiol. 31, 97, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e7f375f6-face-421e-b445-d53cddb4bb2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.