PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 4 |

Tytuł artykułu

Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on characteristics of growth, photosynthetic pigments, osmotic adjustment, membrane lipid peroxidation and activity of antioxidant enzymes in leaves of tomato (Lycopersicon esculentum cv Zhongzha105) plants was studied in pot culture under low temperature stress. The tomato plants were placed in a sand and soil mixture at 25°C for 6 weeks, and then subjected to 8°C for 1 week. AM symbiosis decreased malondialdehyde (MDA) content in leaves. The contents of photosynthetic pigments, sugars and soluble protein in leaves were higher, but leaf proline content was lower in mycorrhizal than non- mycorrhizal plants. AM colonization increased the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) in leaves. The results indicate that the AM fungus is capable of alleviating the damage caused by low temperature stress on tomato plants by reducing membrane lipid peroxidation and increasing the photosynthetic pigments, accumulation of osmotic adjustment compounds, and antioxidant enzyme activity. Consequently, arbuscular mycorrhiza formation highly enhanced the cold tolerance of tomato plant, which increased host biomass and promoted plant growth.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

4

Opis fizyczny

p.1217-1225,fig.,ref.

Twórcy

  • Department of Botany, Faculty of Science, South Valley University, 83523, Qena, Egypt
autor
  • Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, People s Republic of China

Bibliografia

  • Abdel Latef AA, Shaddad KAM, Ismail MA, Abu Alhmad FM (2009) Benzyladenine can alleviate saline injury of two roselle (Hibiscus sabdariffa) cultivars via equilibration of cytosolutes including anthocyanins. Int J Agric Biol 11:151–157
  • Ali MB, Hahn E, Paek K (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem 43:213–223
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399
  • Aroca R, Vernieri P, Irigoyen JJ, Sancher-Diaz M, Tognoni F, Pardosso A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling induced water stress. Plant Sci 165:671–679
  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639
  • Badour SSA (1959) Analytisch–chemische Untersuchung des Kaliummangels bei Chlorella im Vergleich mit anderen Mangelzuständen. Ph.D. Dissertation Göttingen
  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958
  • Baon JB, Smith SE, Alston AM (1994) Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection. J Plant Nutr 17:479–491
  • Bates LS, Wladren PR, Tear DT (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207
  • Bowler C, Slooten L, Vandenbraden S (1992) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254
  • Chance B, Meahly CA (1955) Assay of catalases and peroxidase. Methods Enzymol 2:764–775
  • Charest C, Phan CT (1990) Cold acclimation of wheat (Triticum aestivum): properties of enzymes involved in proline metabolism. Physiol Plant 80:159–168
  • Charest C, Dalpé Y, Brown A (1993) The effect of vesiculararbuscular mycorrhizae and chilling on two hybrids of Zea mays L. Mycorrhiza 4:89–92
  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101
  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv Environ Res 7:123–138
  • Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60:501–516
  • Ferullo J-M, Griffith M (2001) Mechanisms of cold acclimation. In: Basra AS (ed) Crop responses and adaptations to temperature stress. Food Products Press, New York, pp 109–150
  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular infection in roots. New Phytol 84:489–500
  • Hajiboland R, Aliasgharzadeh N, Laiegh FS, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.). plants Plant Soil 331:313–327
  • Haugen LM, Smith SE (1992) The effect of high temperature and fallow period on infection of mung bean and cashew roots by the vesicular–arbuscular mycorrhizal fungus Glomus intraradices. Plant Soil 145:71–80
  • Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biol 14:1181–1190
  • Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002) Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol Biochem 40:691–696
  • Hurry VM, Huner NPA (1992) Effect of cold hardening on sensitivity of winter and spring wheat leaves to short-term photoinhibition and recovery of photosynthesis. Plant Physiol 100:1283–1290
  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, AI-Juburi HJ, Zhao CX, Shao HB, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436
  • Kingston-Smith AH, Harbinson J, Williams J, Foyer HC (1997) Effect of chilling on carbon assimilation, enzyme activation and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiol 114:1039–1046
  • Kishor PBK, Sangama S, Amrutha RN, Laxmi PS, Naidu KR, Rao KS (2005) Regulation of proline biosynthesis degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438
  • Koide RT, Schreiner RP (1992) Regulation of the vesiculararbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581
  • Kormanik PP, Bryan WC, Schultz RC (1980) Procedure and equipment for staining large number of plant roots for endomycorrhizal assay. Can J Microbiol 26:536–538
  • Kytöviita M, Ruotsalainen AL (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. Am J Bot 94:1309–1315
  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Env Microbiol 61:3592–3597
  • Liu A, Wang B, Hamel C (2004) Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature. Mycorrhiza 14:93–101
  • Martin P (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775
  • Martin CA, Stutz JC (2004) Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza 14:241–244
  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Paradis R, Dalpé Y, Charest C (1995) The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat. New Phytol 129:637–642
  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway (Picea abies L.). Plant Physiol 106:53–60
  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750
  • Potvin C, Charest C (1991) Maternal effects of temperature on metabolism in the C₄ weed Echinochloa crus-galli. Ecology 72:1973–1979
  • Rahman M, Gul S, Ahmad I (2004) Effects of water stress on growth and photosynthetic pigments of corn (Zea mays L.) cultivars. Int J Agric Biol 6:652–655
  • Raju PS, Clark RB, Ellis JR, Maranville JW (1990) Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170
  • Sawers RJH, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97
  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421
  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London
  • Stewart RC, Bewley JD (1980) Lipid peroxidation associated with accelerated ageing of soybean axes. Plant Physiol 65:245–248
  • Tognetti JA, Salerno GL, Crespi MD, Pontis HG (1990) Sucrose and fructan metabolism of different wheat cultivars at chilling temperatures. Physiol Plant 78:554–559
  • Volkmar KM, Woodbury W (1989) Effects of soil temperatures and depth on colonization and root and shoot growth of barley inoculated with vesicular–arbuscular mycorrhizae indigenous to Canadian prairie soil. Can J Bot 67:1702–1707
  • Wang B, Funakoshi DM, Dalpé Y, Hamel C (2002) 32P absorption and translocation to host plants by AM fungi at low root zone temperature. Mycorrhiza 12:93–96
  • Wu QS, Xia RX, Zou YN (2006) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163:1101–1110
  • Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83:702–708
  • Zhang ZA, Zhang MS (2006) Experimental guide for plant physiology. High education, Beijing
  • Zhang F, Hamel C, Kianmehr H, Smith DL (1995) Root-zone temperature and soybean [Glycine max (L.) Merr.] vesicular–arbuscular mycorrhizae: development and interactions with the nitrogen fixing symbiosis. Environ Exp Bot 35:287–298
  • Zhu CX, Song BF, Xu WH (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e7b56aa2-5ce9-474a-8f28-d2f3c69a6eb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.