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In this study we investigated if near infrared (NIR) spectroscopy can be effectively used to predict

content of various fraction (LF – light fraction and MAF – mineral associated fractions) of soil

organic matter, also in the context of their spatial distribution. Additionally, we used NIR spec−

troscopy to evaluate basic properties of forest soils. We analyzed 256 soil samples from the topsoil

of plots in central Poland. Using laboratory techniques, we divided the soil samples into two soil

carbon fractions: the light fraction (LF) and mineral−associated fraction (MAF). A calibration

model was developed using the spectra from 171 soil samples and their corresponding measured

values. The regression model was validated using 85 independent soil samples. Using this model,

we estimated the following forest soil properties: carbon concentration in light fraction (CLF),

carbon concentration in mineral−associated fraction (CMAF), ratio of the CLF to the total carbon

content of the soil sample (CLF/C), ratio of the CMAF to the total carbon content of the soil sam−

ple (CMAF/C), the total concentration of carbon (Ct) and nitrogen (Nt), C:N ratio (CN), pH, the

concentration of exchangeable base cations (BC) and cation exchange capacity (CEC). The best

calibration results were obtained for CLF, CLF/C and CMAF/C. The largest adjusted coefficients

of determination for validation were obtained for Nt, CN, BC and CEC. Model developed for

the CLF was characterized by inaccurate value prediction. The paper shows also the relationship

between the optimum number of soil sample spectra and the absolute and relative measure−

ment error. Comparison of the measured and predicted values show that NIR spectroscopy has

potential for determining soil parameters. The statistical assessment and spatial distribution

analysis of the modelled CMAF demonstrated relatively good agreement with measured values.

However, the model’s assessment of the CLF was less accurate. We conclude that NIR spectroscopy

is most applicable for use in soil science to determine the parameters: Ct, Nt, C/N, pH, CEC,

CMAF and CMAF/C.
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Introduction

Near infrared (NIR) spectroscopy is a dynamic and innovative research technique based on the

interpretation of the oscillation−rotation spectra of a given substance (Atkins, 2001; Viscarra Rossel

et al., 2006). NIR spectroscopy can act as an alternative to expensive and time−consuming labo−

ratory measurements that require more complex sample preparation and analysis. The NIR

technique is relatively simple to perform and can be carried out by persons after initial training.

It is a non−invasive method that allows for the assessment of several soil properties through the

analysis of a single spectrum that can be obtained within seconds (Ben−Dor and Banin, 1995;

Islam et al., 2003; Seema et al., 2020). The use of this technique in forest soil science is in its

infancy. However, studies show there is potential for NIR spectroscopy as a tool to facilitate the

determination of soil properties (Kania and Gruba, 2016; Kania et al., 2017).

The use of NIR spectroscopy to determine soil properties is subject to certain limitations.

The results obtained are only a model estimate of the real values and are prone to error. Therefore,

it is necessary to scan a large enough number of samples to obtain an average value close to the

laboratory−measured value. Additionally, it is not known whether the model parameters are sen−

sitive to the species composition of the forest stand, which will be important to understand when

developing models for forest soils (Chodak et al., 2007; Stenberg et al., 2010; Ng et al., 2020).

Soil organic matter (SOM) is an important source of plant nutrients in both agricultural and

natural forest ecosystems. In addition, understanding the properties of SOM is useful when

assessing the soil type, climate, vegetation and soil productivity (Loveland and Webb, 2003).

SOM is a factor that influences the overall soil quality, and is an indicator of sustainable agricultural

practices (Freixo et al., 2002; Loveland and Webb, 2003).

The fractionation of SOM into its different organic components is considered an important

step in understanding a soil’s properties, as different organic fractions vary in their function in

the soil ecosystem, chemical composition and circulation time (degree of stability). This process

can also separate the primary and secondary organic complexes (Christensen, 2001). However, this

is an expensive process requiring intensive labor from trained personnel and a properly equipped

laboratory. Therefore, there is a need to develop alternative methods to classify SOM.

Forest soil research is largely based on assessing the properties of samples taken from a single

soil cover, that are then considered representative of the wider soil surface. However, the chemical

properties of forest soils can change over small distances. This is particularly evident in topsoil

layer (Conyers and Davey, 1990; Gil, 1995). It is therefore necessary to determine the optimum

number of samples needed to produce an average value that is accurate to a reasonable degree

(typically 95% confidence) and that can be considered representative.

The aim of this study was to investigate if NIR spectroscopy can be effectively used to

predict the content of various fraction (light fraction and mineral associated fractions) of soil

organic matter, also in the context of their spatial distribution. Additionally, we used the NIR

technique to assess basic properties of forest soils. The properties determined from the NIR

spectra were compared with the analogous results obtained via chemometric methods, utilizing

soil samples with known physicochemical properties.

Material and methods 

STUDY SITE. The study site for sample collection was located in the Suchedniów Forest District

area in central Poland (Fig. 1). 
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Sampling plots were established on soils under silver fir Abies alba Mill. and European

beech Fagus sylvatica L. stands, as well as a mixture of Scots pine Pinus sylvestris L., European oak

Quercus robur L. and common birch Betula pendula Roth stands. The site terrain is gently inclined

to the NW. An elevation is ranging between 290 and 412 m above sea level. According to the

WRB classification, local soils were represented by Dystric Cambisols, Haplic Luvisoils and Albic

Podzols (FAO, 2014). Soils are derived from Triassic sandstones and claystones, Quaternary

sands and fluvio−glacial Quaternary sands. The Triassic sandstones, developed during the lower

Triassic, were reddish in color, resulting from inclusions of iron−rich hematite. The major clay

mineral component in the sandstones and claystones from the research site was kaolinite. The

Quaternary sands were derived mostly from material derived from sandstone weathering, and

are underlain by sandstones and claystones (Krajewski, 1955). 

SOIL SAMPLING AND LABORATORY ANALYSIS. We analyzed 256 soil samples. Each sample was col−

lected from the mineral topsoil (A or E) at the soil profile located at each plot. A detailed sampling

scheme has been previously outlined by Gruba et al. (2015). The soil pH was measured by a poten−

tiometric method using a combined electrode in a soil suspension in distilled water (1:5 mass−to−

−volume ratio), according to Buurman et al. (1996). Concentrations of exchangeable base cations

(BC=Ca2++K++Mg2++Na+) and cation exchange capacity (CEC, the sum of base cations and total

acidity) was measured by ICP (ICP−OES Thermo iCAP 6500 DUO, Thermo Fisher Scientific,

Cambridge, U.K.). Fifteen g sub−samples were used to perform physical separation of SOM

fractions. Fractionation procedure was described in details in Gruba et al. (2015). Briefly, the soil

samples were divided into two carbon fractions: a light fraction (LF) and mineral−associated

fraction (MAF). Separation of the SOM was carried out using a method designed for isolating

the C content (Sohi et al., 2001). Then, were measured soil property values, including the carbon

concentration in light fraction (CLF), carbon concentration in mineral−associated fraction

(CMAF), ratio of the CLF to the total carbon content of the soil sample (CLF/C), ratio of the CMAF

to the total carbon content of the soil sample (CMAF/C), total concentration of carbon (Ct) and

nitrogen (Nt), C:N ratio (CN) (using LECO CNS TruMac analyzer, Leco, St. Joseph, MI, USA). 

NIR SPECTROSCOPY ANALYSIS. NIR spectroscopy was performed using a Fourier transform (FT)

near infrared spectrometer (Antaris II FT−NIR; Thermo Fisher Scientific, Waltham, MA, USA).
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Fig. 1.

Research site: (a) locating in Poland, (b) hypsometric map

a) b)
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Soil samples were placed in a glass tube (5 cm height, 1.9 cm diameter) in the spectrometer for

analysis. Spectra were collected in the wavelength range of 1000 to 2500 nm. The spectrometer

did not require any additional adjustment. Spectral analyses were performed using TQ Analyst

8 software (Thermo Fisher Scientific, Waltham, MA, USA). To calibrate the regression models

for the soil properties of interest, we used the spectra from 171 soil samples. To assess the accu−

racy and reliability of these models, we performed a validation test using a subset (every third file)

of the remaining 85 sample spectra that had not been used to calibrate the regression model.

After multiple test calibrations, we selected the settings that yielded the highest adjusted coef−

ficients of determination (R2
adj) for the soil properties. The level of statistical significance was

defined at p<0.05. The quality of the calibration and validation steps is expressed by the coef−

ficient of determination of calibration (R2C) and coefficient of determination of validation

(R2V). Statistical analyses were conducted using Statistica 13 software (Dell Inc., 2016).

The best results for most soil properties were obtained using the PLS (partial least square

regression model and calculating the first derivative (1st) spectrum. Only for pH and BC was the

second derivative (2nd) spectrum used. The spectral range was cut for Ct, Nt, CN and CEC to

obtain the best fit and to optimize the coefficients of calibration (R2C). For the models for the

remaining properties, the full spectrum ranges gave the best results (Table 1).

Results and discussion

GENERAL CHARACTERISTICS OF THE INVESTIGATED SOILS. The soil samples had varied charac−

teristics, as evidenced by the range of values for the analyzed soil properties (Table 2). The pH

of the soil samples ranged from acidic to slightly alkaline. The concentration of carbon in the

light fraction was lower than the mineral−associated fraction. However, the percentage of carbon

concentration in the light and mineral−associated fraction was relatively wide. The variability in

the C:N ratios was also large, with a difference between the lowest and highest values of 39

units.

CALIBRATION RESULTS. The best calibration results, expressed by larger values of R2C, were

obtained for CLF, CLF/C and CMAF/C (0.90�R2C). Reasonable calibration results were calculated

638

Soil properties a Spectral range [cm–1] Derivative b R2C c

Ct 4000−6975 1st 0.87

Nt 4000−6975 1st 0.84

CN 4000−5200 1st 0.81

pH 4000−10000 2nd 0.77

BC 4000−10000 2nd 0.76

CEC 4000−6975 1st 0.80

CLF 4000−10000 1st 0.90

CLF/C 4000−10000 1st 0.92

CMAF 4000−10000 1st 0.82

CMAF/C 4000−10000 1st 0.93

Table 1.

Optimum program settings (spectral range, derivative) and calibration coefficients (R2C) for selected soil
properties

aCt – concentration of total carbon, Nt – concentration of total nitrogen; CN – carbon to nitrogen ratio; BC – concentra−
tion of exchangeable base cations (BC=Ca2++K++Mg2++Na+); CEC – cation exchange capacity; CLF – carbon concen−
tration in light fraction; CLF/C – carbon concentration in light fraction to total carbon concentration; CMAF – carbon con−
centration in mineral−associated fraction; CMAF/C – carbon concentration in mineral−associated fraction to total carbon
concentration; b1st – first derivative; 2nd – second derivative; cR2C – coefficient of determination for calibration
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for Ct, Nt, CN and CEC and CMAF (0.80�R2C�0.90). The lowest quality results (R2C�0.80)

were achieved for the BC and pH calibrations (Fig. 2, Table 1). In summary, the optimum corre−

lation coefficients were achieved for the parameters assessing the percentage of the organic fraction

of the total carbon, regardless of the fraction type. The regression models created during calibra−

tion were characterized by high accuracy. Low flexibility is a feature of over−fitted models. (Table 1).

It should be noted that limited flexibility in the models may negatively impact the validation

results.

VALIDATION RESULTS. The strength of the validation results is demonstrated by the R2V coeffi−

cients (Table 3). The largest coefficients were obtained for Nt, CN, BC, CEC (0.60�R2V).

Medium strength coefficients were calculated for Ct, CMAF and CMAF/C (0.4�R2V�0.6), and the

weakest coefficients were derived for pH, CLF and CLF/C (R2V�0.4). Weaker validation results are

likely the result of a high accuracy obtained during the calibration stage. The differences between

the measured and calculated values were not statistically significant, except for BC (Table 3).

The model developed for the carbon concentration in the light fraction is characterized by

inaccurate value prediction, especially from the upper end of range, i.e., �10 g·kg–1. This inaccu−

rate prediction is visible compered to CMAF, C and N scatter plots. This is also confirmed by the

lower R2V coefficients obtained for CLF and CLF/C (Table 3).

The instances where our models performed relatively poorly, i.e., for CLF, CLF/C and BC,

provides weight to the opinions of some researchers that the NIR technique is not yet sufficiently

developed to replace laboratory methods (Ludwig et al., 2002; Cozzolino and Morón, 2006).

Conversely, Pietrzykowski and Chodak (2014) showed that NIR spectroscopy can be success−

fully used to analyze properties of soil organic matter such as the C content or C:N ratio. Similar

conclusions can be drawn from the work by Cozzolino and Morón (2006). In agreement with this,

in our study we developed reasonable models for predicting these parameters. For our samples,

the estimated carbon concentrations were comparable to the measured values. Therefore, our

study demonstrated that the NIR technique has the potential to estimate select properties of

organic matter and to replace traditional laboratory methods in the future. However, further

research is still needed to optimize the technique for all organic matter properties of interest

(Cozzolino and Morón, 2006; Pietrzykowski and Chodak, 2014; Kania and Gruba, 2016). 
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Soil propertiesa Unit nb Mean Range
Ct g·kg–1 256 2.4 (0.2−6.4)

Nt % 256 0.13 (0.1−0.45)

CN – 256 21 (11−50)

pH – 247 4.3 (3.7−7.2)

BC cmol(+)kg–1 256 0.98 (0.06−25.25)

CEC cmol(+)kg–1 256 8.9 (1−26.8)

CLF g·kg–1 256 7.1 (0.7−33.9)

CLF/C % 256 34 (3−84)

CMAF g·kg–1 256 8.7 (0.1−28.2)

CMAF/C % 256 41 (0.17−87)

Table 2.

Descriptive statistics of selected soil properties

aCt – concentration of total carbon, Nt – concentration of total nitrogen; CN – carbon to nitrogen ratio; BC= concentration
of exchangeable base cations (BC=Ca2++K++Mg2++Na+); CEC – cation exchange capacity; CLF – carbon concentration
in light fraction; CLF/C – carbon concentration in light fraction to total carbon concentration; CMAF – carbon concen−
tration in mineral−associated fraction; CMAF/C – carbon concentration in mineral−associated fraction to total carbon con−
centration; bn – number of samples
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Fig. 2.

Calibration scatter plots for the measured vs calculated values for (a) concentration of total carbon (Ct), (b) con−
centration of total nitrogen (Nt), (c) carbon to nitrogen ratio (CN), (d) pH, (e) concentration of exchangeable
base cations (BC), (f) cation exchange capacity (CEC), (g) carbon concentration in light fraction (CLF), (h) carbon
concentration in light fraction to total carbon concentration (CLF/C), (i) carbon concentration in mineral−asso−
ciated fraction (CMAF) and (j) carbon concentration in mineral−associated fraction to total carbon concen−
tration (CMAF/C)

a) b)

c) d)

e) f)

g) h)

i) j)
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RELATIONSHIP BETWEEN NUMBER OF SOIL SPECTRA AND MEASUREMENT ERROR. Collection of a single

sample spectrum will not provide sufficiently comparable results to measured values. It is there−

fore necessary to scan multiple samples to obtain a value close to those derived from laboratory

measurements (Ben−Dor and Banin, 1995; Chodak et al., 2007). It is therefore important to

estimate the number of scans required. If we consider the values for CLF and CMAF and the

expected standard error (with 95% confidence), the optimum number of sample scans (p) can

be calculated according to the formula by Krysicki et al. (1995): 

where:

� – is the standard deviation 

�x – is the assumed absolute (g·kg–1) or relative (%) measurement error.

The relationship between the optimum number of soil sample spectra and the absolute error

for CLF and CMAF is shown in Figure 4. To estimate CMAF at the absolute error level of 2 g·kg–1,

45 spectra are required, whereas only 15 spectra are required for CLF. As the error increases, the

difference between the optimum number of spectra for CLF and CMAF decreases. To obtain an

accuracy of 3 g·kg–1, we need 20 CMAF spectra and 6 CLF spectra (a difference of 14). At the error

level of 5 g·kg–1, the difference in optimum number of spectra is only 5. The differences between

the optimum number of spectra required for the estimation of CLF and CMAF and the relative

error rate (5−50%) are shown in Figure 5. The smaller the relative error, the more CLF spectra

needed in relation to CMAF. To estimate values within 5% error, 5 and 23 spectra are needed for

CMAF and CLF respectively. The smaller optimum number of CLF spectra required compared

with CMAF is caused by a difference in their standard deviations. The carbon content in the light

fraction was lower than in the mineral−associated fraction, resulting in a standard deviation

almost twice as small (Table 3).

MAPPING. Spatial analysis followed by mapping of the laboratory−determined CLF values high−

lighted two hotspots of higher concentrations of this fraction (Fig. 6a). The hotspots are in the
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Soil R2Vb Measured values Calculated values pe

propertiesa mean (min−max)c
� mean (min−max) �

d

Ct 0.53 2.5 (0.3−6.2) 1.42 2.4 (0.5−4.9) 0.96 NS

Nt 0.63 0.14 (0.01−0.42) 0.10 0.13 (0.0−0.28) 0.07 NS

CN 0.60 20 (12−34) 4.71 20 (8−32) 4.61 NS

pH 0,11 4.2 (3.8−5.6) 0.27 4.2 (3.6−5.4) 0.26 NS

BC 0.67 0.9 (0.07−24.28) 2.82 1.18 (−1.5−14.67) 2.06 <0.001

CEC 0.72 8.8 (1.0−24.6) 4.69 8.4 (−2.1−21.3) 3.86 NS

CLF 0.33 7.7 (0.8−33.9) 6.05 6.9 (−0.4−19.4) 3.82 NS

CLF/C 0.31 35 (3−84) 14.69 33 (5−60) 11.88 NS

CMAF 0.58 13.5 (1.5−46.5) 7.94 13.6 (0.2−29.0) 6.72 NS

CMAF/C 0.40 67 (21−94) 13.99 65 (43−90) 11.54 NS

Table 3.

Statistical results for NIR model validation

aCt – concentration of total carbon, Nt – concentration of total nitrogen; CN – carbon to nitrogen ratio; BC – the concen−
tration of exchangeable base cations (BC=Ca2++K++Mg2++Na+); CEC – cation exchange capacity; CLF – carbon con−
centration in light fraction; CLF/C – carbon concentration in light fraction to total carbon concentration; CMAF – carbon
concentration in mineral−associated fraction; CMAF/C – carbon concentration in mineral−associated fraction to total carbon
concentration; bR2V – adjusted coefficient of determination for validation; cmax – maximum values; min=minimum values;
d
� – standard deviation; ep – significance level; NS – no significant differences p>0.05
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elevated areas (360−400 m above sea level) composed of soils derived from Triassic sandstones.

The kriged values for observed CLF range between 3.5 and 16 g·kg–1. Interestingly, the spatial

distribution for NIR−predicted CLF values does not show the CLF hotspots. The kriged CLF values

lie in the narrow range of 6 to 8 g·kg–1 (Fig. 6b). As was shown in Figure 3a, the NIR analysis

failed to predict values above 10 g·kg–1. It is therefore not surprising that the kriging analysis

failed to reproduce the CLF concentration hotspots visible in Figure 6a.

In the case of the spatial distributions for the observed and NIR−predicted CMAF values,

the trends are similar. The distributions show a gradual increase in CMAF in a westerly direction

(Fig. 6c, d). Additionally, the values overlap, i.e., 12−16 g·kg–1 and 10−18 g·kg–1 for the observed

and predicted CMAF values, respectively.
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a) b)

c) d)

Fig. 3.

Scatter plots of the measured vs calculated values for the validation dataset derived for (a) carbon con−
centration in light fraction (CLF), (b) carbon concentration in mineral−associated fraction (CMAF), (c) total
concentration of carbon (Ct) and (d) total concentration of nitrogen (Nt)

Fig. 4.

Relationship between the optimum number
of soil sample spectra (p) and the assumed
absolute error �x [g·kg–1] for the carbon con−
centration in light fraction (CLF) and carbon
concentration in mineral−associated fraction
(CMAF)

CLF

CMAF
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Fig. 5.

Relationship between the optimum number
of soil sample spectra (p) and the assumed
relative error �x [%] for the carbon concen−
tration in light fraction (CLF) and carbon
concentration in mineral−associated fraction
(CMAF)

Fig. 6.

Kriged maps for (a) observed carbon concentration in light fraction (CLF), (b) predicted carbon concentra−
tion in light fraction (CLF), (c) observed carbon concentration in mineral−associated fraction (CMAF) and 
(d) predicted carbon concentration in mineral−associated fraction (CMAF) in soils [g·kg–1]

a) b)

c) d)

CLF

CMAF
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Conclusions

In this study we aimed to produce models that could predict properties of SOM with a high

accuracy relative to laboratory−measured values. The calibrated models allowed us to predict

values with a high accuracy. Satisfactory results were also produced during model validation.

The statistical comparison of the measured and predicted values highlighted the applicability

of the NIR technique for assessing soil parameters. However, the model developed for the car−

bon concentration in the light fraction (CLF) lacked sensitivity for predicting values at the upper

end of the range, i.e., >10 g·kg–1 of soil. This translated into an underestimation in the peak CLF

values when mapping the spatial distribution of this fraction in soils. This underestimation is

also responsible for errors in the NIR prediction of the total soil carbon content (Ct). However,

the application of the NIR technique for quantitative assessment of the stabile CMAF content

produced relatively good results relative to measured values, in term of its statistical assessment

and spatial distribution. 

Additionally, our study demonstrated that to optimize the use of the NIR method for the

prediction of soil properties, the number of optimum spectra required to achieve a desired level

of accuracy in the estimated value should be taken into account during the sampling stage.

Overall, our study shows that with further work to optimize the technique, NIR spec−

troscopy has potential for use in soil science as a less labor−intensive alternative to laboratory

techniques for determining parameters of SOM such as the Ct, Nt, CN, pH, CEC, CMAF and

CMAF/C. Based on average commercial prices, the cost and time of using the NIR technique is

a few percent compared to laboratory analysis (not including the cost of the NIR spectrometer).
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Streszczenie

Zastosowanie spektroskopii w bliskiej podczerwieni (NIR) 
do ilościowej oceny materii organicznej w glebach leśnych

W ostatnim czasie obserwuje się znaczny wzrost zainteresowania techniką bliskiej podczerwieni

(NIR – near infrared), stanowiącej alternatywę dla kosztownych i pracochłonnych analiz laborato−

ryjnych. Niskie koszty badań wynikają m.in. z tego, że próbka gleby wymaga minimalnego stopnia

przygotowania. Jest to metoda nieinwazyjna, pozwalająca na oszacowanie kilku właściwości badanej

gleby na podstawie pojedynczego widma. Uzyskanie obrazu widma badanej gleby trwa kilkanaście

sekund (Ben−Dor, Banin 1995; Islam i in. 2003; Viscarra Rossel i in. 2006). W badaniach glebo−

znawczych technika ta jest jeszcze stosunkowo rzadko wykorzystywana. Celem pracy było zbada−

nie, czy rodzaj frakcji glebowych wpływa na zastosowanie techniki NIR do ilościowej oceny materii

organicznej, także w kontekście ich przestrzennego rozmieszczenia. Dodatkowo wykorzystano

spektroskopię bliskiej podczerwieni do oznaczenia podstawowych właściwości gleb leśnych.

Analizie poddano 256 próbek z wierzchniej warstwy gleb, z powierzchni zlokalizowanych w cen−
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tralnej części Polski (ryc. 1). W wyniku prac laboratoryjnych oznaczono pH, zawartość kationów

zasadowych (BC) oraz pojemność wymiany kationów (CEC). Każda z próbek gleby została po−

dzielona na 2 odrębne frakcje glebowe: frakcję lekką (LF – light fraction) oraz powiązaną z frakcją

mineralną (MAF – mineral associated fraction), zgodnie z Sohi i in. (2001). Następnie oznaczono

właściwości gleb, tj.: zawartość węgla organicznego we frakcji lekkiej (CLF), zawartość węgla

organicznego we frakcji powiązanej z frakcją mineralną (CMAF), stosunek CLF do ogólnej zawar−

tości węgla w próbce gleby (CLF/C), stosunek CMAF do ogólnej zawartości węgla w próbce gleby

(CMAF/C), całkowitą zawartość węgla (Ct) i azotu (Nt) oraz stosunek węgla do azotu (CN). Próbki

gleb były zróżnicowane, a wartości poszczególnych właściwości gleb charakteryzowały się rela−

tywnie dużą zmiennością (tab. 1). Do kalibracji modelu regresji wykorzystano widma 171 próbek

gleb. W wyniku próbnych i wielokrotnych kalibracji wybrano ustawienia programu, które po−

zwoliły na opracowanie najdokładniejszych modeli. W celu sprawdzenia dokładności i wiarygod−

ności opracowanych modeli przeprowadzono test walidacyjny na 85 wybranych schematycznie

widmach, które nie zostały użyte wcześniej do kalibracji modelu. Przy użyciu opracowanych

modeli kalibracyjnych oszacowano poszczególne właściwości gleb leśnych. Najlepsze wyniki

kalibracji uzyskano dla CLF, CLF/C i CMAF/C (tab. 2; ryc. 2). Na etapie walidacji najlepsze rezul−

taty osiągnięto dla Nt, CN, BC i CEC, natomiast przeciętne dla Ct, CMAF oraz CMAF/C (tab. 3).

Opracowany model CLF charakteryzował się niedokładną prognozą, głównie dla górnej granicy

zakresu wartości (ryc. 3). W pracy przedstawiono zależność pomiędzy optymalną liczbą widm

CLF i CMAF a błędem bezwzględnym (2−20 g·kg–1). Do uzyskania dokładności 3 g·kg–1 potrzeba

20 widm CMAF i 6 widm CLF (różnica wyniosła 14 widm). Przy poziomie błędu 5 g·kg–1 różnica

optymalnej liczby widm wynosi już tylko 5 (ryc. 4). Na ryc. 5 pokazano różnice pomiędzy opty−

malną liczbą widm gleby potrzebnych do oszacowania CLF i CMAF a względnym poziomem błędu

(5−50%). Im mniejszy zakres błędu, tym więcej jest potrzebnych widm CLF w stosunku do CMAF.

Aby oszacować wartości w granicach błędu 5%, potrzebnych jest 5 widm CMAF i 23 CLF. W pracy

dokonano analizy rozkładu przestrzennego pomiędzy wartościami CLF i CMAF oznaczonymi i osza−

cowanymi. Mapowanie oznaczonych wartości CLF wykazało 2 zagęszczone miejsca (360−400 m

n.p.m.), natomiast analiza przestrzenna CLF oznaczonych NIR nie wykazała takich miejsc (ryc. 6a, b).

Rozkłady przestrzenne CMAF wykazały podobną tendencję: stopniowy wzrost wartości w kie−

runku zachodnim (ryc. 6c, d). Porównanie zmierzonych i oszacowanych wartości pokazuje, że spek−

troskopia NIR ma potencjał określania parametrów gleby. Ocena statystyczna oraz analiza rozkładu

przestrzennego modelowanego CMAF wykazały stosunkowo dobrą zgodność z oznaczonymi labo−

ratoryjnie wartościami. Ocena modelu CLF była mniej dokładna. Wyniki badań pozwalają wysnuć

wniosek, że spektroskopia NIR może być stosowana w gleboznawstwie do określania para−

metrów gleb, tj.: Ct, Nt, CN, pH, CEC, CMAF i CMAF/C.


