Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 11 |

Tytuł artykułu

The role of xylopodium in Na+ exclusion and osmolyte accumulation in faveleira [Cnidoscolus phyllacanthus (d. arg.) Pax et K. Hoffm] under salt stress

Warianty tytułu

Języki publikacji



The aim of this work was to evaluate physiological and biochemical responses of faveleira under salinity. Plants were grown in nutrient solution containing 0, 50, 100 or 150 mM NaCl. After 8 days of stress, plants were harvested and separated into roots, xylopodium, stem + petiole (SP), and basal, median and apical leaves. Salinity reduced the dry weight of all plant parts, although the indicators of water status were not changed. Salt stress increased the content of Na⁺ in the different plant parts, especially in xylopodium, in which it increased approximately eightfold while the content of K⁺ decreased by approximately 40 % under 150 mM NaCl. As a consequence, the K⁺/Na⁺ ratio decreased in all plant organs. In stressed plants, the content of soluble sugars was increased in the roots, SP and leaf strata and the content of soluble proteins increased in all organs. The content of total free amino acids increased in the roots, SP and apical leaves, while the proline content increased in all organs except in xylopodium. It is suggested that the xylopodium may be involved in a mechanism of exclusion and/or compartmentalization of Na⁺ in faveleira under salinity to avoid ionic toxicity in the leaves.

Słowa kluczowe








Opis fizyczny



  • Pos-Graduacao em Fitotecnia, Universidade Federal Rural do Semiarido, Mossoro, RN, CEP 59625-900, Brazil
  • Pos-Graduacao em Fitotecnia, Universidade Federal Rural do Semiarido, Mossoro, RN, CEP 59625-900, Brazil
  • Laboratorio de Estudos em Biotecnologia Vegetal, Departamento de Biologia Celular e Genetica, Universidade Federal do Rio Grande do Norte, Campus Universitario Lagoa Nova, Natal, RN, CEP 59078-970, Brazil
  • Laboratorio de Estudos em Biotecnologia Vegetal, Departamento de Biologia Celular e Genetica, Universidade Federal do Rio Grande do Norte, Campus Universitario Lagoa Nova, Natal, RN, CEP 59078-970, Brazil
  • Departamento de Ciencias Agrarias e Exatas, Universidade Estadual da Paraíba, Sítio Cajueiro, Zona Rural, Catole Do Rocha, PB, CEP 58884-000, Brazil
  • Laboratorio de Estudos em Biotecnologia Vegetal, Departamento de Biologia Celular e Genetica, Universidade Federal do Rio Grande do Norte, Campus Universitario Lagoa Nova, Natal, RN, CEP 59078-970, Brazil


  • Acosta JA, Faz A, Jansen B, Kalbitz K, Martínez-Martínez S (2011) Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. J Arid Environ 75:1056–1066. doi:10.1016/j.jaridenv.2011.05.006
  • Alves AAC, Setter TL (2004) Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Ann Bot 94:605–613. doi:10.1093/aob/mch179
  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30. doi:10.1080/0735-260291044160
  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 6:3–16. doi:10.1016/j.plantsci.2003.10.024
  • Babita M, Maheswari M, Rao LM, Shanker AK, Rao DG (2010) Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ Exp Bot 69:243–249. doi:10.1016/j.envexpbot.2010.05.006
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Buchanan BB, Gruissem W, Jones RL (2009) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville
  • Chang I, Cheng K, Huang P, Lin Y, Cheng L, Cheng T (2011) Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure. Acta Physiol Plant 34:1165–1176. doi:10.1007/s11738-011-0913-7
  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125
  • D’Souza MRD, Devaraj VR (2010) Biochemical responses of Hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol Plant 32:341–353. doi:10.1007/s11738-009-0412-2
  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818. doi:10.1104/pp.104.057307
  • Díaz-López L, Gimeno V, Lidón V, Simón I, Martínez V, García-Sánchez F (2012) The tolerance of Jatropha curcas seedlings to NaCl: an ecophysiological analysis. Plant Physiol Biochem 54:34–42
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017
  • Elavumootil OC, Martin JP, Moreno ML (2003) Changes in sugars, sucrose synthase activity and proteins in salinity tolerant callus and cells suspension cultures of Brassica oleraceae L. Biol Plant 46:7–12. doi:10.1023/A:1022389428782
  • Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143. doi:10.1111/j.1399-3054.2011.01450.x
  • Esteves BS, Suzuki MS (2008) Efeito da salinidade sobre as plantas. Oecol Bras 4:662–679
  • Fini A, Bellasio C, Pollastri S, Tattini M, Ferrini F (2013) Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J Arid Environ 89:21–29. doi:10.1016/j.jaridenv.2012.10.009
  • Gierth M, Maser P (2007) Potassium transporters in plants: involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356. doi:10.1016/j.febslet.2007.03.035
  • Gorai M, Neffati M (2011) Osmotic adjustment, water relations and growth attributes of the xero-halophyte Reaumuria vermiculata L. (Tamaricaceae) in response to salt stress. Acta Physiol Plant 33:1425–1433. doi:10.1007/s11738-010-0677-5
  • Heidari-Sharifabad H, Mirzaie-Nodoushan H (2006) Salinity-induced growth and some metabolic changes in three Salsola species. J Arid Environ 67:715–720. doi:10.1016/j.jaridenv.2006.03.018
  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–2462. doi:10.1104/pp.104.046664
  • Imada S, Yamanaka N, Tamai S (2009) Effects of salinity on the growth, Na partitioning, and Na⁺ dynamics of a salt-tolerant tree, Populus alba L. J Arid Environ 73:245–251. doi:10.1016/j.jaridenv.2008.10.006
  • Irigoyen JJ, Emerich DW, Sanchez-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfafa (Medicago sativa) plants. Physiol Plant 84:55–66. doi:10.1111/j.1399-3054.1992.tb08764.x
  • Jenci A, Natarajan S (2009) Growth and organic constituent variations with salinity in Excoecaria agallocha L., an important halophyte. Bot Res Intl 1:50–54
  • Kholova J, Sairam RK, Meena RC (2010) Osmolytes and metal íons accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiol Plant. doi:10.1007/s11738-009-0424-y
  • Köskerosglu S, Tuna AL (2010) The investigation on accumulation levels of proline and stress parameters of the maize (Zea mays L.) plants under salt and water stress. Acta Physiol Plant 32:541–549
  • Maathius FJM, Amtmann A (1999) K⁺ nutrition and Na⁺ toxicity: basis of cellular K⁺/Na⁺ ratios. Ann Bot 84:123–133. doi:10.1006/anbo.1999.0912
  • Maathius FJM, Dawn Verlin F, Smith FA, Sanders D, Fernandez JA, Walker NA (1996) The physiological relevance of the Na⁺ coupled K⁺ transport. Plant Physiol 112:1609–1616. doi:10.1104/pp.112.4.1609
  • Macêdo CEC, Van Sint Jan V, Kinet JM, Lutts S (2009) Effects of aluminium on root growth and apical root cells in rice (Oryza sativa L.) cultivars. Reliability of screening tests to detect Al resistance at the seedling stage. Acta Physiol Plant 31:1255–1262. doi:10.1007/s11738-009-0362-8
  • Maia JM, Macêdo CEC, Voigt EL, Freitas JBS, Silveira JAG (2010) Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biol Plant 54:159–163. doi:10.1007/s10535-010-0026-y
  • Maia JM, Voigt EL, Ferreira-Silva SL, Fontenele AV, Macêdo CEC, Silveira JAG (2013) Differences in cowpea root growth triggered by salinity and dehydration are associated with oxidative modulation involving types I and III peroxidases and apoplastic ascorbate. J Plant Growth Regul 32:376–387. doi:10.1007/s00344-012-9308-2
  • Meloni DA, Gulotta MR, Martínez CA (2008) Salinity tolerance in Schinopsis quebracho colorado: Seed germination, growth, ion relations and metabolic responses. J Arid Environ 72:785–1792. doi:10.1016/j.jaridenv.2008.05.003
  • Mohammdkani N, Heidari R (2008) Effects of drought stress on soluble proteins in two maize varieties. Turk J Biol 32:23–30
  • Morais DL, Viégas RA, Silva LMM, Lima AR Jr, Costa RCL, Rocha IMA, Silveira JAG (2007) Acumulação de íons e metabolismo de N em cajueiro anão em meio salino. Rev Bras Eng Agríc Ambient 11:125–133. doi:10.1590/S1415-43662007000200001
  • Munns R (2002) Comparative physiology of salt and water stress Plant. Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911
  • Munns R, Weir R (1981) Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficit at two light levels. Aust J Plant Physiol 8:93–105. doi:10.1071/PP9810093
  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi:10.1093/jxb/erj100
  • Nio SA, Cawthray GR, Wade LJ, Colmer TD (2011) Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiol Biochem 49:1126–1137. doi:10.1016/j.plaphy.2011.05.011
  • Oueslati S, Karray-Bouraoui N, Atia H, Rabhi M, Ksouri R, Lachasal M (2010) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant 32:289–296. doi:10.1007/s11738-009-0406-0
  • Patakas A, Nikolaou N, Ziozioiu E, Radoglou K, Noitsakis BX (2002) The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci 163:361–367. doi:10.1016/S0168-9452(02)00140-1
  • Peoples MB, Faizah AW, Reakasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Center for International Agricultural Research, Canberra
  • Ribeiro Filho NM, Florêncio IM, Brito AC, Dantas JP, Cavalcanti MT (2011) Avaliação nutricional de raízes de faveleira e cenoura em períodos equidistantes de coleta. Rev Bras Prod Agroind 13:163–168
  • Shabala L, Mackay A, Tian Y, Jacobsen S, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant 1:1–13. doi:10.1111/j.1399-3054.2012.01599.x
  • Silva FAM, Melloni R, Miranda JRP, Carvalho JG (2000) Efeito do estresse salino sobre a nutrição mineral e o crescimento de mudas de aroeira (Myracrodruon urundeuva) cultivadas em solução nutritiva. Revista Cerne 6:52–59
  • Silva MBR, Batista RC, Lima VLA, Barbosa EM, Barbosa MFN (2005) Crescimento de plantas jovens da espécie florestal favela (Cnidoscolus phyllacanthus Pax et K. Hoffm) em diferentes níveis de salinidade da água. Rev Biol Cienc Terra 5:1–14
  • Silva EN, Silveira JAG, Rodrigues CRF, Lima CS, Viégas RA (2009) Contribuição de solutos inorgânicos no ajustamento osmótico de pinhão-manso submetido à salinidade. Pesq Agropecu Bras 44:437–445. doi:10.1590/S0100-204X2009000500002
  • Silva EN, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JAG (2010) Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J Arid Environ 74:1130–1137. doi:10.1016/j.jaridenv. 2010.05.036
  • Silveira JAG, Viégas RA, Rocha IMA, Monteiro-Moreira ACO, Moreira RM, Oliveira JTA (2003) Proline accumulation and glutamine synthetase are increased by salt-induced proteolysis in cashew leaves. J Plant Physiol 160:115–123. doi:10.1078/0176-1617-00890
  • Silveira JAG, Junior JM, Silva EN, Ferreira-Silva SL, Aragão RM, Viégas RA (2012) Salt resistance in two cashew species is associated with accumulation of organic and inorganic solutes. Acta Physiol Plant 34:1629–1637. doi:10.1007/s11738-012-0957-3
  • Slavick B (1974) Methods of studying plant water relations. Springet, New York
  • Sousa AEC, Gheyi HR, Correia KG, Soares FAL, Nobre RG (2011) Crescimento e consumo hídrico de pinhão manso sob estresse salino e doses de fósforo. Rev Cienc Agron 42:310–318. doi:10.1590/S1806-66902011000200008
  • Sturm A, Tang G-Q (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407. doi:10.1016/S1360-1385(99)01470-3
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058
  • Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Belles JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481. doi:10.1016/j.jaridenv.2003.12.003
  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. doi:10.1016/S1369-5266(03)00085-2

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.