EN
Two glucose-limited realkalized fed-batch cultures of Lactococcus lactis CECT 539 were carried out in a diluted whey medium (DW) using two different feeding media. The cultures were fed a mixture of a 400 g/l concentrated lactose and a concentrated mussel processing waste (CMPW, 101.72 g glucose/l) medium (fermentation I) or a CMPW medium supplemented with glucose and KH₂PO₄ up to concentrations of 400 g glucose/l and 3.21 g total phosphorus/l, respectively (fermentation II). For an accurate description and a better understanding of the kinetics of both cultures, the growth and product formation by L.lactis CECT 539 were both modelled, for the first time, as a function of the amounts of glucose (G) added and the pH gradient (VpH) generated in every realkalization and feeding cycle, by using an empirical polynomial model. With this modeling procedure, the kinetics of biomass, viable cell counts, nisin, lactic acid, acetic acid and butane-2,3-diol production in both cultures were successfully described (R² values > 0.970) and interpreted for the first time. In addition, the optimum VpH and G values for each product were accurately calculated in the two realkalized fed-batch cultures. This approach appears to be useful for designing feeding strategies to enhance the productions of biomass, bacteriocin, and metabolites by the nisin-producing strain in wastes from the food industry.