PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 67 | 3 |

Tytuł artykułu

Composition and biological properties of agaricus bisporus fruiting bodies- a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
White Agaricus bisporus is both the most popular and the most commonly eaten edible mushroom species in the world. It is popular not only because of its taste, but also due to its high level of nutrients: dietary fiber (chitin), essential, semi-essential amino acids, unsaturated fatty acids including linoleic and linolenic acids, easily digestible proteins, sterols, phenolic and indole compounds, and vitamins − especially provitamin D2 andB1 , B2 , B6 , B7 , and C. Fruiting bodies of A. bisporus have antioxidant, antibacterial, anti-inflammatory, antitumor, and immunomodulatory activity. The presence of antioxidant ergothioneine (which also displays the antimutagenic, chemo- and radioprotective activity) is also noteworthy. A. bisporus also contains derivatives of benzoquinone, a substance which belongs to the group of antibiotics. Studies of tyrosinase isolated from this species show its very high similarity to human tyrosinase. This points directly to the fact that this species could be a rich source of tyrosinase used for medicinal and cosmetics purposes. A. bisporus is also a rich source of selenium, zinc and other elements such as magnesium, copper, iron, potassium, sodium, calcium, phosphorus, sulfur or manganese. In conclusion, the presence of these compounds and elements with biological activity in fruiting bodies of A. bisporus confirms their nutraceutical and medicinal properties.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

3

Opis fizyczny

p.173-181,ref.

Twórcy

autor
  • Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30–688 Cracow, Poland
autor
  • Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30–688 Cracow, Poland
autor
  • Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30–688 Cracow, Poland
autor
  • Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30–688 Cracow, Poland
autor
  • Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30–688 Cracow, Poland

Bibliografia

  • 1. Ahmad N., Bansal R., Rastogi A.K., Kidwai J.R., Effect of PHA-B fraction of Agaricus bisporus lectin on insulin release and 45Ca2+ uptake by islets of Langerhans in vitro. Acta Diabetol. Lat., 1984, 21, 63–70.
  • 2. Ahmad M.S., Ahmad S., Gautam B., Afzal M., Antigenotoxic and anticlastogenic potential of Agaricus bisporus against MMS induced toxicity in human lymphocyte cultures and in bone marrow cells of mice. Egypt. J. Med. Hum. Genet., 2013, 14, 395–402.
  • 3. Batterbury M., Tebbs C.A., Rhodes J.M., Grierson I., Agaricus bisporus (Edible Mushroom Lectin) inhibits ocular fibroblast proliferation and collagen lattice contraction. Exp. Eye Res., 2002, 74, 361–370.
  • 4. Bennett B.L., Littlejohn L., Review of new topical hemostatic dressings for combat casualty care. Mil. Med., 2014, 179, 497–514.
  • 5. Bernaś E., Jaworska G., Kmiecik W., Storage and processing of edible mushrooms. Acta Sci. Pol. Technol. Aliment., 2006a, 5, 5–23.
  • 6. Bernaś E., Jaworska G., Lisiewska Z., Edible mushrooms as a source of valuable nutritive constituents. Acta Sci. Pol. Technol. Aliment., 2006b, 5, 5–20.
  • 7. Bloch B., In Handbuch der Haut- und Geschlechtskrankheiten. Herausgegeben. 1927, Von J. Jadassohn, Springer, Berlin, pp. 434–541.
  • 8. Carrizo M.E., Capaldi S., Perduca M., Irazoqui F.J., Nores G.A., Monaco H.L., The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two boding sites, each specific for a different configuration at a single epimeric hydroxyl. J. Biol. Chem., 2005, 280, 10614–10623.
  • 9. Chen S., Oh S.R., Phun S., Hur G., Ye J.J., Kwok S.L., Shrode G.E., Belury M., Adams L.S., Williams D., Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer. Res., 2006, 66, 12026–12034.
  • 10. Chen Y.C., Ho K., Hsieh Y., Wang T., Mau J., Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT − Food Sci. Technol., 2012, 47, 274–278.
  • 11. Cheung P.C.K., Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci. Human Wellness, 2013, 2, 162–166.
  • 12. Czapski J., Antioxidant activity and phenolic content in some strains of mushrooms (Agaricus bisporus). Veg. Crop. Res., 2005, 62, 165–173.
  • 13. De Castro G.P., Dowling M.B., Kilbourne M., Keledjian K., Driscoll I.R., Raghavan S.R., Hess J.R., Scalea T.M., Bochicchio G.V., Determination of efficacy of novel modified chitosan sponge dressing in a lethal arterial injury model in swine. J. Trauma Acute Care Surg., 2012, 72, 899–907.
  • 14. Dubost N.J., Ou B., Beelman R.B., Quantifi cation of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem., 2007,105, 727–735.
  • 15. Elmastas M., Isildak O., Turkekul I., Temur N., Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J. Food Compos. Anal., 2007, 20, 337–345.
  • 16. Falandysz J., Borovička J., Macro and trace mineral constituents and radionuclides in mushrooms: health benefi ts and risk. Appl. Microbiol. Biotechnol., 2013, 97, 477–501.
  • 17. Foulongne-Orio M., Murat C., Castanera R., Ramírez L., Sonnenberg A.D.W., Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genet. Biol., 2013, 55, 6–21.
  • 18. Fukushima M., Nakano M., Morii Y., Ohashi T., Fujiwara Y., Sonoyama K., Hepatic LDL receptor mRNA in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber. J. Nutr., 2000, 130, 2151–2156.
  • 19. Gheibi N., Saboury A.A., Haghbeen K., Moosavi-Movahedi A.A., The effect of some osmolytes on the activity and stability of mushroom tyrosinase. J. Biosci., 2006, 31, 355–362.
  • 20. Glamočlija J., Stojković D., Nikolić M., Ćirić A., Reis F.S., Barros L., Ferreira I.C.F.R., A comparative study on edible mushrooms as functional foods. Food Funct., 2015, 6, 1900–1910.
  • 21. Hassan M.A.A., Rouf R., Tiralongo E., May T.W., Tiralongo J., Mushroom lectins: specifi city, structure and bioactivity relevant to human disease. Int. J. Mol. Sci., 2015 16, 7802–7838.
  • 22. Heleno S.A., Diz P., Prieto M.A., Barros L., Rodrigues A., Barreiro M.F., Frerriera I.C.F.R., Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conven
  • 23. Hu Y.H., Chen C.M., Xu L., Cui Y., Yu X.Y., Gao H.J., Wang Q., Liu K., Shi Y., Chen Q.X., Postharvest application of 4-methoxy cinnamic acid for extending the shelf life of mushroom (Agaricus bisporus). Postharvest Biol. Tec., 2015, 104, 33–41.
  • 24. Jeong S.C., Jeong Y.T., Yang B.K., Islam R., Koyyalamudi S.R., Pang G., Cho K.Y., Song C.H., White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr. Res., 2010, 30, 49–56.
  • 25. Johnson M.A., Encyclopedia of Food Sciences and Nutrition. 2003, The University of Georgia, Athens, GA, USA (Second Edition).
  • 26. Kalač P., Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chem., 2010, 122, 2–15.
  • 27. Kalbarczyk J., Radzki W., Cultivated mushrooms as a valuable diet constituent and a source of biologically active substances. Herba Pol., 2009, 55, 224–232 (in Polish).
  • 28. Kalembasa D., Becher M., Rzymowski D., Some trace elements and heavy metals content in substrate, cover and mushroom Agaricus bisporus. Ochrona Środowiska i Zasobów Naturalnych, 2012, 52, 86–92 (in Polish).
  • 29. Kampmann M., Hoffrichter A.C., Stalinski D., Wichmann R., Kinetic characterization of tyrosinase containing mushroom (Agaricus bisporus) cells immobilized in silica alginate. J. Mol. Catal. B: Enzym., 2015, 116, 124–133.
  • 30. Kent D., Sheridan C.M., Tomkinson H.A., White S.J., Hiscott P., Grierson I., Edible mushroom (Agaricus bisporus) lectin modulates human retinal pigment epithelial cell behavior in vitro. Exp. Eye Res., 2003a, 76, 213–219.
  • 31. Kent D., Sheridan C.M., Tomkinson H.A., White S.J., Hiscott P., Yu L., Grierson I., Edible mushroom (Agaricus bisporus) lectin inhibits human retinal pigment epithelial cell proliferation in vitro. Wound Repair Regen., 2003b, 11, 285–291.
  • 32. Kondo K., Watanabe A., Akiyama H., Maitani T., The metabolisms of agaritine, a mushroom hydrazine in mice. Food Chem. Toxicol., 2008, 46, 854–862.
  • 33. Koyalamudi S.R., Jeong S.C., Song C.H., Cho K.Y., Pang G., Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. J. Agric. Food Chem., 2009, 57, 3351–3355.
  • 34. Labus K., Turek A., Liesiene J., Bryjak J., Effi cient Agaricus bisporus tyrosinase immobilization on cellulose-based carriers. Biochem. Eng. J., 2011, 56, 232–240.
  • 35. Leiva F.J., Saenz-Díez J.C., Martínez E., Blanco J., Environmental impact of Agaricus bisporus cultivation process. Eur. J. Agron., 2015, 71, 141–148.
  • 36. Liu J., Jia L., Kan J., Jin C.H., In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem. Toxicol., 2013, 51, 310–316.
  • 37. Malmquist J.P., Clemens S.C., Oien H.J., Wilson S.L., Hemostasis of oral surgery wounds with the hemcon dental dressing. J. Oral Maxillofac. Surg., 2008, 66, 1177–1183.
  • 38. Maseko T., Howell K., Dunshea F.R., Ng K., Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem., 2014, 146, 327–333.
  • 39. Muszyńska B., Sułkowska-Ziaja K., Ekiert H., Indole compounds in fruiting bodies of some edible Basidiomycota species. Food Chem., 2011, 125, 1306–1308.
  • 40. Muszyńska B., Sułkowska-Ziaja K., Łojewski M., Opoka W., Zając M., Rojowski J., Edible mushrooms in prophylaxis and treatment of human diseases. Med. Inter. Rev., 2013a, 101, 170–183.
  • 41. Muszyńska B., Sułkowska-Ziaja K., Wójcik A., Levels of physiologically active indole derivatives in the fruiting bodies of some edible mushrooms (Basidiomycota) before and after thermal processing. Mycoscience, 2013b, 54, 321–326.
  • 42. Muszyńska B., Kała K., Sułkowska-Ziaja K., Gaweł K., Zając M., Opoka W., Determination of indole compounds released from selected edible mushrooms and their biomass to artifi cial stomach juice. LWT – Food Sci. Technol., 2015a, 62, 27–31.
  • 43. Muszyńska B., Smalec A., Sułkowska-Ziaja K.,, Opoka W., Reczyński W, Baś B., Culinary-medicinal Agaricus bisporus (white button mushroom) and its in vitro cultures as a source of selected biologically-active elements. J. Food Sci. Tech., 2015b, 52, 7337–7344.
  • 44. Ng T.B., Peptides and proteins from fungi. Peptides, 2004, 25, 1055–1073.
  • 45. Ndungutse V., Mereddy R., Sultanbawa Y., Bioactive properties of mushroom (Agaricus bisporus) stipe extracts. J. Food Process. Preserv., 2015, 39, 2225–2233.
  • 46. Novaes M.R., Valadares F., Reis M.C., Gonçalves D.R., Menezes M.C., The effects of dietary supplementation with Agaricales mushrooms and other medicinal fungi on breast cancer: evidence-based medicine. Clinics (Sao Paulo), 2011, 66, 2133–2139.
  • 47. Öztürk M., Duru M.E., Kivrak S., Mercan-Doğan N., Türkoglu A., Özler M.A., In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem. Toxicol., 2011, 49, 1353–1360.
  • 48. Patel S., Goyal A., Recent developments in mushrooms as anticancer therapeutics: a review. 3 Biotech., 2012, 2, 1–15.
  • 49. Parslew R., Jones K.T., Rhodes J.M., Sharpe G.R., The antiproliferative effect of lectin from the edible mushroom (Agaricus bisporus) on human keratinocytes: preliminary studies on its use in psoriasis. Brit. J. Dermatol., 1999, 140, 56–60.
  • 50. Pei F., Shi Y., Gao X., Wu F., Mariga M.A., Yanh W., Zhao L., An X., Xin Z., Yang F., Hu Q., Changes in non–volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying. Food Chem., 2014, 165, 547–554.
  • 51. Rajewska J., Bałasińska B., Biologically active compounds of edible mushrooms and their benefi cialimpact on health. Postepy Hig. Med. Dosw., 2004, 58, 352–357 (in Polish).
  • 52. Reis F.S., Martins A., Barros L., Ferreira I.C., Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro. Food Chem. Toxicol., 2012, 50, 1201–1207.
  • 53. Roberts J., Teichert A. McHugh T.H., Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage. J. Agric.Food Chem., 2008, 56, 4541–4544.
  • 54. Ruthes A.C., Rattmann Y.D., Malquevicz-Paiva S.M., Baggio C.H., Santos A.R.S., Gorin P.A.J., Iacomin M., Agaricus bisporus fucogalactan: Structural characterization and pharmacological approaches. Carbohydr. Polym., 2013, 92, 184–191.
  • 55. Shi Y.L., Benzie I.F., Buswell J.A., Role of tyrosinase in the genoprotective effect of the edible mushroom, Agaricus bisporus. Life Sci., 2002, 70, 1595–1608.
  • 56. Schulzová V., Hajšlová J., Peroutka R., Gry J., Andersson H.C., Influence of storage and house hold processing on the agaritine content of the cultivated Agaricus mushroom. Food Addit. Contam., 2002, 19, 853–862.
  • 57. Singh S.S., Wang H., Chan Y.S., Pan W., Dan X., Yin C.M., Akkouh O., Ng T.B., Lectins from edible mushrooms. Molecules, 2015, 20, 446–469.
  • 58. Siwulski M., Sobieralski K., Sas-Golak I., Nutritive and healthpromoting value of mushrooms. Żywn. Nauka Technol. Jakość, 2014, 1, 16–28 (in Polish).
  • 59. Smiderle F.R., Alquini G., Tadra-Sfeir M.Z., Iacomini M., Wichers H.J., Van Griensven L.J.L.D., Agaricus bisporus and Agaricus brasiliensis (1 → 6)-β-d-glucans show immunostimulatory activity on human THP-1 derived macrophages. Carbohydr. Polym., 2013, 94, 91−99.
  • 60. Sorimachi K., Koge T., Agaricus blazei water extracts as alternative medicines. Curr. Pharm. Anal., 2008, 4, 39–43.
  • 61. Tsai S.Y., Wu T.P., Huang S.J., Mau J.L., Antioxidant properties of ethanolic extracts from culinary-medicinal button mushroom Agaricus bisporus (J. Lange) Imbach (Agaricomycetes) harvested at different stages of maturity. Int J. Med. Mushrooms, 2008, 10, 127–137.
  • 62. Vamanu E., Determination of antioxidant and antimicrobial properties of Agaricus bisporus from Romanian markets. 2012, Ovidius University Annals of Chemistry, Constanta, Romania, pp. 47–52.
  • 63. Vamanu E., Nita S., Biological activity of fl uidized bed ethanol extracts from several edible mushrooms. Food Sci. Biotechnol., 2014, 23, 1483–1490.
  • 64. Wang Y., Liu Y., Wang H., Li C., Qi P., Bao J., Agaricus bisporus lectins mediates islet β-cell proliferation through regulation of cell cycle proteins. Exp. Biol. Med., 2012, 237, 287–296.
  • 65. Wang H.X., Ng T.B., Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodefid ciency virus reverse transcriptase and glycohydrolases. Planta Med., 2001, 67, 669–672.
  • 66. Wannet W.J.B., Op den Camp H.J.M.O, Wisselink H.W., Van der Drift C., Van Griensven L.J.L.D., Vogels G.D., Purifi cation and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochim. Biophys. Acta, 1998, 1425, 177–188.
  • 67. Wee J.J., Identifi cation of anticoagulant components in Korean red ginseng. J. Ginseng Res., 2010, 34, 355–362. 68. Yilmaz N., Solmaz M., Türkekul İ., Elmastaş M., Fatty acids composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chem., 2006, 99, 168–174.
  • 69. Yu L.G., Fernig D.G., White M.R., Spiller D.G., Appleton P., Evans R.C., Grierson I., Smith J.A., Davies H., Gerasimenko O.V., Petersen O.H., Milton J.D., Rhodes J.M., Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import. J. Biol. Chem., 1999, 19, 4890–4899.
  • 70. Zaidi K.U., Ali A.S., Ali S.A., Purification and characterization of melanogenic enzyme tyrosinase from button mushroom. Enzyme Res., 2014, ID 120739.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e62ae1fc-4861-4882-ac3b-dd8dd98a1aa0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.