PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 70 | 1 |

Tytuł artykułu

Effect of conjugated linoleic acid and different type of dietary fat on serum lipid profile, liver enzymes activity and oxidative stress markers in Wistar rats

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Nutritional recommendations emphasize the need to limit consumption of saturated fatty acids and to increase the intake of polyunsaturated fatty acids in the prevention of non-communicable chronic diseases, particularly cardiovascular diseases. Among the fatty acids with health-related effects on the body, conjugated fatty acids are mentioned (i.e. CLA). Objective. The current study was designed to determine the effects of conjugated linoleic acid (CLA) on serum lipid profile, glucose, liver enzymes activity (AST and ALT), malonic dialdehyde (MDA) as well as lipid hydroperoxide (LPO) concentrations in rats fed diet differing in type of dietary fat. Material and methods. Male Wistar rats were divided into six groups and fed the following diets: control AIN-93G diet contained soybean oil (O) and diets with modification of fat source: butter (B) and margarine (M). The experimental diets were supplemented with 1% of conjugated linoleic acid (O+CLA, B+CLA, M+CLA). After 21 days the blood was collected and lipid profile, glucose, liver enzymes, MDA as well as LPO were analyzed. Results. The dietary treatments had no significant effect on the body weight and liver weight of the animals. The concentrations of total cholesterol (TC) and LDL+VLDL cholesterol were unchanged. Both experimental factors (fat source and CLA) had a significant influence on the TAG and HDL levels. Margarine (M) significantly increased the TAG concentration, whereas CLA had a significant impact on the TAG reduction (M+CLA). Glucose level was significantly decreased in all groups fed diets supplemented with CLA. Serum ALT significantly increased in all CLA groups. Fat source had statistically significant influence on the MDA concentration. The LPO level was significantly elevated in all CLA groups. There was statistically significant interaction of experimental factors (fat source and CLA supplementation) on LPO level. Conclusions. Margarine had an adverse effect on the rat’s lipid profile. However, in the group fed with margarine, the addition of CLA decreased the concentration of TAG. Regardless of the type of the dietary fat, CLA supplementation increased the level of LPO in the blood serum of animals.
PL
Wprowadzenie. Zalecenia żywieniowe podkreślają potrzebę ograniczania spożycia nasyconych kwasów tłuszczowych i zwiększania spożycia wielonienasyconych kwasów tłuszczowych w prewencji przewlekłych chorób niezakaźnych, szczególnie chorób układu krążenia. Spośród kwasów tłuszczowych o prozdrowotnym oddziaływaniu na organizm wymienia się sprzężone kwasy tłuszczowe (tu: CLA). Cel. Badanie miało na celu określenie wpływu sprzężonego kwasu linolowego (CLA) na profil lipidowy, aktywność enzymów wątrobowych (AST i ALT), dialdehyd malonowy (MDA) oraz stężenie wodoronadtlenku lipidów (LPO) w surowicy krwi szczurów żywionych dietami zawierającymi różne źródła tłuszczu. Materiały i metody. Samce szczurów Wistar żywiono dietami AIN-93G o różnym źródle tłuszczu: olej sojowy (O), masło (B) i margaryna (M). Diety eksperymentalne uzupełniono 1% dodatkiem CLA (O+CLA, B+CLA, M+CLA). Zwierzęta otrzymywały dietę oraz wodę ad libitum. Po 21 dniach doświadczenia w pobranej krwi wykonano analizy profilu lipidowego, glukozy, aktywności enzymów wątrobowych (AST i ALT), MDA oraz LPO. Wyniki. Skład diet eksperymentalnych nie miał istotnego wpływu na masę ciała i masę wątroby zwierząt. Stężenia cholesterolu całkowitego (TC) i cholesterolu frakcji LDL + VLDL nie uległy zmianie. Zarówno źródło tłuszczu jak i CLA miały znaczący wpływ na poziomy TAG i frakcji HDL cholesterolu. Margaryna (M) istotnie zwiększała stężenie TAG, podczas gdy CLA obniżył istotnie stężenie TAG w grupie M+CLA. Poziom glukozy we wszystkich grupach, którym podawano diety z dodatkiem CLA, istotnie się zmniejszył. Aktywność ALT w surowicy istotnie wzrosła we wszystkich grupach z dodatkiem CLA. Źródło tłuszczu miało statystycznie istotny wpływ na stężenie MDA. Poziom LPO był istotnie podwyższony we wszystkich grupach CLA. Wykazano istotną statystycznie interakcję czynników eksperymentalnych (źródło tłuszczu i CLA) na poziom LPO. Wnioski. Żywienie zwierząt dietą z dodatkiem margaryny miało niekorzystny wpływ na profil lipidowy szczurów. Natomiast w grupie żywionej margaryną dodatek CLA obniżył stężenie TAG. Bez względu na rodzaj spożywanego tłuszczu suplementacja CLA podniosła poziom LPO w surowicy krwi zwierząt.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

70

Numer

1

Opis fizyczny

p.27-33,ref.

Twórcy

  • Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland
autor
  • Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrznńskiego 14, 30-348 Krakow, Poland
  • Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland

Bibliografia

  • 1. Arbonés-Mainar J.M., Navarro M.A., Acín S., Guzmán M.A., Arnal C., Surra J.C., Carnicer R., Roche H.M., Osada J.: Trans-10, cis-12- and cis-9, trans-11-Conjugated Linoleic Acid Isomers Selectively Modify HDL-Apolipoprotein Composition in Apolipoprotein E Knockout Mice. J. Nutr. 2006; 136: 353-359.
  • 2. Belury M.A.: Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of action. J. Nutr. 2002;132: 2995-2998.
  • 3. Calder P.C.: Fat chance immunomodulation. Immunology Today. 1998; 19: 244-247.
  • 4. Cho H.J., Kim E.J., Lim S.S., Kim M.K., Sung M.K., Kim J.S., Park J.H.Y.: Trans-10,cis-12, not cis-9,trans-11, conjugated linoleic acid inhibits G1-S progression in HT-29 human colon cancer cells. J. Nutr. 2006; 136: 893–898.
  • 5. Desroches S., Chouinard P.Y., Galibois I., Corneau L., Delisle J., Lamarche B., Couture P., Bergeron N.: Lack of effect of dietary conjugated linoleic acids naturally incorporated into butter on the lipid profile and body composition of overweight and obese men. Am. J. Clin. Nutr. 2005; 82: 309–319.
  • 6. Diniz Y.S., Santos P.P., Assalin H.B., Souza G.A., Rocha K.K., Ebaid G.M., Seiva F.R., Amauchi J.F., Novelli Filho J.L., Novelli E.L.: Conjugated linoleic acid and cardiac health: oxidative stress and energetic metabolism in standard and sucrose-rich diets. Eur. J. Pharmacol. 2008; 579: 318-325.
  • 7. Dorfman S.E., Wang S., Vega-López S., Jauhiainen M., Lichtenstein A.H.: Dietary Fatty Acids and Cholesterol Differentially Modulate HDL Cholesterol Metabolism in Golden-Syrian Hamsters. J. Nutr. 2005; 135: 492-498.
  • 8. Evans M., Brown J., McIntosh M.: Isomer-specific effects of conjugated linoleic acid (CLA) on adiposity and lipid metabolism. J. Nutr. Biochem. 2002; 13: 508-516.
  • 9. Field C.J., Schley P.D.: Evidence for potential mechanisms for the effect of conjugated linoleic acid on tumor metabolism and immune function: lessons from n-3 fatty acids. Am. J. Clin. Nutr. 2004; 79: 1190S-1198S.
  • 10. Franczyk-Żarów M., Czyżyńska I., Drahun A., Maślak E., Chłopicki S., Kostogrys R.B.: Margarine supplemented with conjugated linolenic acid (CLnA) has no effect on atherosclerosis but alleviates the liver steatosis and affects the expression of lipid metabolism genes in apoE/LDLR-/- mice. Eur. J. Lipid Sci. Technol. 2015; 117: 589–600.
  • 11. Franczyk-Żarów M., Kostogrys R.B., Szymczyk B., Jawień J., Gajda M., Cichocki T., Wojnar L., Chłopicki S., Pisulewski P.: Functional effects of eggs, naturally enriched with conjugated linoleic acid (CLA), on the blood lipid profile, development of atherosclerosis and composition of atherosclerotic plaque in apolipoprotein E and low density lipoprotein receptor double-knockout mice (apoE/LDLR-/-). Br. J. Nutr. 2008; 99: 49-58.
  • 12. Halade G., Rahman M., Fernandes G.: Differential effects of conjugated linoleic acid isomers in insulin-resistant female C57Bl/6J mice. J. Nutr. Biochem. 2010; 4: 332-337.
  • 13. Han S.N., Leka L.S., Lichtenstein A.H., Ausman L.M., Schaefer E.J., Meydani S.N.: Effect of hydrogenated and saturated, relative to polyunsaturated, fat on immune and inflammatory responses of adults with moderate hypercholesterolemia. J. Lipid Res. 2002; 43: 445-452.
  • 14. Hirao A., Yamasaki M., Chujo H., Koyanagi N., Kanouchi H., Yasuda S., Matsuo A., Nishida E., Rikimaru T., Tsujita E., Shimada M., Maehara Y., Tachibana H., Yamada K.: Effect of dietary conjugated linoleic acid on liver regeneration after a partial hepatectomy in rats. J. Nutr. Sci. Vitaminol. 2004; 50: 9-12.
  • 15. Houseknecht K.L., Vandenheuvel J.P., Moyacamarena S.Y., Portocarrero C.P., Peck L.W., Nickel K.P., Belury M.A.: Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the sucker diabetic fatty fa/fa rat. Biochem. Biophys. Res. Commun. 1998; 244: 678–682.
  • 16. Judd J.T., Baer D.J., Clevidence B.A., Muesing R.A., Chen S.C., Weststrate J.A., Meijer G.W., Wittes J., Lichtenstein A.H., Vilella-Bach M., Schaefer E.J.: Effects of margarine compared with those of butter on blood lipid profiles related to cardiovascular disease risk factors in normolipemic adults fed controlled diets. Am. J. Clin. Nutr. 1998; 68: 768–777.
  • 17. Kennedy A., Martinem K., Schmidt S., Mandrup S., LaPoint K., McIntosh M.: Antiobesity mechanisms of action of conjugated linoleic acid. J. Nutr. Biochem. 2010; 3: 171-179.
  • 18. Kilian M., Mautsch I., Gregor J.I., Heinichen D., Jacobi C.A., Schimke I., Guski H., Müller J.M., Wenger F.A.: Influence of conjugated and conventional linoleic acid on tumor growth and lipid peroxidation in pancreatic adenocarcinoma in hamster. Prostaglandins, Leukotrien es and Essential Fatty Acids. 2003; 69: 67-72.
  • 19. Kilian M., Mautsch I., Gregor J.I., Stahlknecht P., Jacobi C.A., Schimke I., Guski H., Wenger F.A.: Influence of conjugated vs. conventional linoleic acid on liver metastasis and hepatic lipidperoxidation in BOP-induced pancreatic cancer in Syrian hamster. Prostaglandins, Le ukotrienes and Essential Fatty Acids 2002; 67: 223-228.
  • 20. Kim H.K., Kim S.R., Ahn J.Y., Cho I.J., Yoon C.S., Ha T.Y.: Dietary conjugated linoleic acid reduces lipid peroxidation by increasing oxidative stability in rats. J. Nutr. Sci. Vitaminol. 2005; 51: 8-15.
  • 21. Kim J.H., Pan J.H., Park H.G., Yoon H.G., Kwon O.J., Kim T.W., Shin D.H., Kim Y.J.: Functional comparison of esterified and free forms of conjugated linoleic acid in high-fat-diet-induced obese C57BL/6J mice. J. Agric. Food Chem. 2010; 58: 11441-11447.
  • 22. Kostogrys R.B., Franczyk-Żarow M., Maślak E., Gajda M., Mateuszuk Ł., Chłopicki S.: Margarine supplemented with t10c12 CLA isomers decreased SMA in atherosclerosis plaque and induced steatosis in Apolipoprotein E and Low-Density Lipoprotein Receptor Double-knockout mice (ApoE/LDLR-/-). J. Nutr. Health Aging 2012; 16: 482-490.
  • 23. Kostogrys R.B., Maślak E., Franczyk-Żarów M., Gajda M., Chłopicki S.: Effects of trans-10, cis-12 and cis-9, trans-11 CLA on atherosclerosis in apoE/LDLR-/- mice. The European J. Lipid Sci.Technol. 2011; 113: 572–583.
  • 24. Kostogrys R.B., Pisulewski P.M.: Conjugated linoleic acid decreased serum triacyloglycerol and changed fatty acid composition in rat’s liver. J. Anim. Feed Sci. 2010; 19: 484–494.
  • 25. Liu X., Joseph S.V., Wakefield A.P., Aukema H.M., Jones P.J.: High dose trans-10,cis-12 CLA increases lean body mass in hamsters, but elevates levels of plasma lipids and liver enzyme biomarkers. Lipids. 2012; 47: 39-46.
  • 26. Lock A.L., Horne A.M., Bauman D.E. Salter A.M.: Butter Naturally Enriched in Conjugated Linoleic Acid and Vaccenic Acid Alters Tissue Fatty Acids and Improves the Plasma Lipoprotein Profile in Cholesterol-Fed Hamsters. J. Nutr. 2005; 135: 1934-1939.
  • 27. Luhman C.M., Faidley T.D. Beitz R.C.: Postprandial lipoprotein composition in pigs fed diets differing in type and amount of dietary fat. J. Nutr. 1992; 122: 120-127.
  • 28. Mensink R.P., Katan M.B.: Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N. Engl. J. Med. 1990; 323: 439-445.
  • 29. Mersmann H.J.: Mechanism for conjugated linoleic acid-mediated reduction In fat deposition. J. Anim. Sci. 2002; 80 (E. Suppl. 2): E126-E134.
  • 30. Milewska M., Sińska B., Gromadzka-Ostrowska J.: Diety hipercholesterolemiczne zawierające różne tłuszcze spożywcze a lipidogram osocza szczurów. [Hypercholesterolemic diets containing different common fats and rats plasma lipids]. Rocz Panstw Zakl Hig 2007; 58: 15-21 (in Polish).
  • 31. Mirzaii S., Mansourian M., Derakhshandeh-Rishehri S.M., Kelishadi R., Heidari-Beni M.: Association of conjugated linoleic acid consumption and liver enzymes in human studies: A systematic review and meta-analysis of randomized controlled clinical trials. Nutrition. 2016; 32: 166-173.
  • 32. Noone E.J., Roche H.M., Nugent A.P., Gibney M.J.: The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. Br. J. Nutr. 2002; 88: 243-251.
  • 33. Noto A., Zahradka P., Ryz N.R., Yurkova N., Xie X.P., Taylor C.G.: Dietary conjugated linoleic acid preserves pancreatic function and reduces inflammatory markers in obese, insulin-resistant rats. Metabolism - Clinical and Experimental, 2007; 56: 142–151.
  • 34. Reeves P.G., Nielsen F.H., Fahey G.C.: AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123(11): 1939-1951.
  • 35. Ryder J.W., Portocarrero C.P., Song X.M., Cui L., Yu M., Combatsiaris T., Galuska D., Bauman D.E., Barbano D.M., Charron M.J., Zierath J.R., Houseknecht K.L.: Isomer-specific antidiabetic properties of conjugated linoleic acid - Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes. 2001; 50: 1149–1157.
  • 36. Santos-Zago L.F., Botelho A.P., de Oliveira A.C.: Supplementation with commercial mixtures of conjugated linoleic acid in association with vitamin E and the process of lipid autoxidation in rats. Lipids. 2007; 42: 845–854.
  • 37. Terpstra A.H., Javadi M., Beynen A.C., Kocsis S., Lankhorst A.E., Lemmens A.G., Mohede I.C.: Dietary conjugated linoleic acids as free fatty acids and triacylglycerols similarly affect body composition and energy balance in mice. J. Nutr. 2003; 133: 3181-3186.
  • 38. Tricon S., Burdge G.C., Kew S., Banerjee T., Russell J.J., Jones E.L., Grimble R.F., Williams C.M., Yaqoob P., Calder P.C.: Opposing effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am. J. Clin. Nutr. 2004; 80: 614-620.
  • 39. Tsuboyama-Kasaoka N., Takahashi M., Tanemura K., Kim H.J., Tsuyoshi T., Okuyama H., Kasai M., Ikemoto S., Ezaki O.: Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes. 2000; 49: 1534–1542.
  • 40. Valeille K., Gripois D., Blouquit M.F., Souidi M., Riottot M., Bouthegourd J.C., Serougne C., Martin J.C.: Lipid atherogenic risk markers can be more favourably influenced by the cis-9 trans-11-octadecadienoate isomer than a conjugated linoleic acid mixture or fish oil in hamsters. Br. J. Nutr. 2004; 91: 191-199.
  • 41. Vyas D., Kadegowda A.K., Erdman R.A.: Dietary conjugated linoleic Acid and hepatic steatosis: species-specific effects on liver and adipose lipid metabolism and gene expression. J. Nutr. Metabol. 2012: 932928.
  • 42. Wang Y., Jones P.J.H.: The role of conjugated linoleic acid in human health. Dietary conjugated linoleic acid and body composition. Am. J Clin. Nutr. 2004; 79: 1153S-1158S.
  • 43. Wood R., Kubena K., O’Brien B., Tseng S., Martin G.: Effect of butter, mono- and polyunsaturated fatty acid-enriched butter, trans fatty acid margarine, and zero trans fatty acid margarine on serum lipids and lipoproteins in healthy men. J. Lipid Res. 1993; 34: 1-11.
  • 44. Yamasaki M., Mansho K., Mishima H., Kimura G., Sasaki M., Kasai M., Tachibana H., Yamada K.: Effect of dietary conjugated linoleic acid on lipid peroxidation and histological change in rat liver tissues. J. Agric. Food Chem. 2000; 48: 6367-6371.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e6245c84-452c-45a0-a7e0-f3278c0bd02e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.