PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 2 |

Tytuł artykułu

Dendromass derived from agricultural land as energy feedstock

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In order to ensure consistent supplies of agriculture-derived lignocellulosic biomass for the emerging biomass market, dedicated plantations of short rotation woody crops (SRWC) need to be developed. Our research aimed at defining the yield, survivability, and morphological features of three plant species (SRWC) cultivated under the conditions of northeastern Poland, on poor soil unsuitable for food or fodder crops. The first factor for the experiment was provided by three plant species: willow (Salix viminalis L. UWM 006), poplar (Populus nigra × P. Maximowiczii Henry cv. Max-5), and black locust (Robinia pseudoacacia L.). The second factor consisted of seven soil enrichment regimes, referred to as “fertilization,” and a control. Willow grew significantly the highest. Poplar grew to a similar height and the diameter of its shoots was significantly the biggest. The yield varied significantly depending on plant species and soil enrichment regime. During a two-year rotation cycle of the crops, poplar and willow produced notably higher yields than black locust, despite growing on poor soil. The soil enrichment regimes, in turn, significantly improved the crop yields.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

2

Opis fizyczny

p.511-520,ref.

Twórcy

  • Department of Plant Breeding and Seed Production,
  • Department of Plant Breeding and Seed Production,
  • Department of Plant Breeding and Seed Production,
  • Department of Plant Breeding and Seed Production,
autor
  • Department of Soil Science and Soil Protection, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland

Bibliografia

  • 1. EUROSTAT. Energy, transport and environment indicators. Pocketbooks, pp. 218, 2011.
  • 2. GUS. Central Statistical Office. Energy from renewable sources in 2010. Warsaw 2011 [In Polish].
  • 3. Renewables global status report. http://www.ren21.net/Portals/97/documents/GSR/REN 21_GSR2011.pdf, 2011 (27.07.2012).
  • 4. BINKLEY D., SENOCK R., BIRD S., COLE T. G. Twenty years of stand development in pure and mixed stands of Eucalyptus saligna and nitrogen – fixing Facaltaria moluccana. Forest Ecol. Manag. 182, 93, 2003.
  • 5. SIMS R. E., SENELWA K., MAIAVA T., BULLOCK B. T. Eucalyptusspecies for biomass energy in New Zealand – Part II: Coppice performance. Biomass Bioenerg. 17, 333, 1999.
  • 6. ROCA FERNANDEZ-VIZARRA L., SEGOVIA IRUJO P. RWE's Experience in a 238 ha Paulownia Plantantion in Spain. 19th European Biomass Conference and Exhibition. From research to industry and markets. 6-10 June. Berlin, Germany: Proceedings 2011.
  • 7. ARAVANOPOULOS F. A. Breeding of fast growing forest tree species for biomass production in Greece. Biomass Bioenerg. 34, 1531, 2010.
  • 8. ZAJĄCZKOWSKI K., KWIECIEŃ R., ZAJĄCZKOWSKA B., WOJDA T., ZAWADZKI M. Productivity of Selection of Poplar and Willow Varieties in Short Rotation Plantations. Forestry Research Institute, 2001 [In Polish].
  • 9. RÉDEI K., OSVÁTH-BUJTÁS Z., VEPERDI I. Black Locust (Robinia pseudoacacia L.) Improvement in Hungary: a Review. Acta Silv. Lign. Hung. 4, 127, 2008.
  • 10. REDEI K., VEPERDI I., CSIHA I., KESERU Z., GYORI J. Yield of black locust (Robinia pseudoacacia L.) short rotation energy crops in Hungary: Case study in the field trial. Lesnicky casopis. 56, (4), 327, 2010.
  • 11. VOLK T. A., ABRAHAMSON L. P., NOWAK C. A., SMART L. B., THARAKAN P. J., WHITE E. H. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenerg. 30, (8-9), 715, 2006.
  • 12. WILKINSON J. M., EVANS E. J., BILSBORROW P. E., WRIGHT C., HEWISON W. O., PILBEAM D. J. Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass Bioenerg. 31, (7), 469, 2007.
  • 13. GUO X.-Y., ZHANG X.-S. Performance of 14 hybrid poplar clones grown in Beijing, China. Biomass Bioenerg. 34, 906, 2010.
  • 14. BERGANTE S., FACCIOTTO G. Nine years measurements in Italian SRC trial in 14 poplar and 6 willow clones. 19 th European Biomass Conference and Exhibition, Berlin, Germany 6-10 June 2011: Proceedings. 2011.
  • 15. FORTIER J., GAGNON D., TRUAX B., LAMBERT F. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenerg. 34, 1028, 2010.
  • 16. JOHANSSON T., KARAĆIĆ A. Increment and biomass in hybrid poplar and some practical implications. Biomass Bioenerg. 35, 1925, 2011.
  • 17. PEARSON C. H., HALVORSON A. D., MOENCH R. D., HAMMON R. W. Production of hybrid poplar under short-term, intensive culture in Western Colorado. Ind. Crops Prod. 31, 492, 2010.
  • 18. PRZYBOROWSKI J. A., JEDRYCZKA M., CISZEWSKA-MARCINIAK J., SULIMA P., WOJCIECHOWICZ K. M., ZENKTELER E. Evaluation of the yield potential and physicochemical properties of the biomass of Salix viminalis × Populus tremula hybrids. Ind. Crops Prod. 36, 549, 2012.
  • 19. STOLARSKI M., SZCZUKOWSKI S., TWORKOWSKI J., KLASA A. Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenerg. 32, (12), 1227, 2008.
  • 20. DIMITRIOU I., ROSENQVIST H. Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production – Biological and economic potential. Biomass Bioenerg. 35, 835, 2011.
  • 21. STANISŁAWSKA-GLUBIAK E., KORZENIOWSKA J., KOCOŃ A. Effect of the Reclamation of Heavy Metal-Contaminated Soil on Growth of Energy Willow. Pol. J. Environ. Stud. 21, (1), 187, 2012.
  • 22. BORIŠEV M., PAJEVIĆ S., NIKOLIĆ N., PILIPOVIĆ A., KRSTIĆ B., ORLOVIĆ S. Phytoextraction of Cd, Ni, and Pb Using Four Willow Clones (Salix spp.). Pol. J. Environ. Stud. 18, (4), 553, 2009.
  • 23. PETRÁŠ R., JAMNICKÁ G., MECKO J., NEUSCHLOVÁ E. State of Mineral Nutrition and Heavy Metals Distribution in Aboveground Biomass of Poplar Clones. Pol. J. Environ. Stud. 21, (2), 447, 2012.
  • 24. Regulation of Minister of Economy of 14 August 2008 on Specific Responsibilities for Issue and Submission of Certificates for Cancellation, Payment of Substitute Fee, Purchase of Electric Energy and Heat Produced by Renewables and Obligation to Confirm Volume of Electric Energy Produced by Renewable Energy Source (Journal of Laws No. 156, Item 969] [In Polish].
  • 25. Regulation of Minister of Economy of 23 February 2010 on Amendment to Regulation on Specific Responsibilities for Issue and Submission of Certificates of Origin for Cancellation, Payment of Substitute Fee, Purchase of Electric Energy and Heat Produced by Renewables and Obligation to Confirm Volume of Electric Energy Produced by Renewable Energy Source (Journal of Laws dated 8 March 2010) [In Polish].
  • 26. STOLARSKI M., SZCZUKOWSKI S., TWORKOWSKI J., WRÓBLEWSKA H., KRZYŻANIAK M. Short rotation willow coppice biomass as an industrial and energy feed-stock. Ind. Crops Prod. 33, 217, 2011.
  • 27. GAJEWSKI R. BIOB Market Potential for Energy Purposes. (In:) Teamwork by P. Bocian, T. Golec, J. Rakowski titled “Modern Technology of Biomass Production and Use for Energy Purposes,” Power Engineering Institute, Warsaw, 414, 2010 [In Polish].
  • 28. ES/PAP 2012. Largest European Energy Woody Crop Plantation. Baltic Daily http://www.dziennikbaltycki.pl/artykul/553881,kwidzyn-najwieksza-w-europie-plantacja-drzew-energetycznych, i d,t.html (23.07.2012). 2012 [In Polish].
  • 29. SPINELLI R., NATI C., MAGAGNOTTI N. Using modified foragers to harvest short-rotation poplar plantations. Biomass Bioenerg. 33, 817, 2009.
  • 30. GONZÁLEZ-GARĆIA S., GASOL C. M., GABARRELL X., RIERADEVALL J., TERESA MOREIRA M., FEIJOO G. Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe. Renewable Energy. 35, 1014, 2010.
  • 31. AEBIOM. 2011 annual statistical report on the contribution of biomass to the energy system in the EU27. Brussels, Belgium, pp. 102, 2011.
  • 32. RÉDEI K., VEPERDI I. The role of black locust (Robinia pseudoacacia L.) in establishment of short-rotation energy plantations in Hungary. International Journal of Horticultural Science. 15, (3), 41, 2009.
  • 33. STOLARSKI M. J. Agrotechnical and economic aspects of biomass production from willow coppice (Salix spp.) as an energy source, vol. 148. University of Warmia and Mazury in Olsztyn, Dissertations and Monographs, pp. 43-111, 2009 [In Polish].
  • 34. TWORKOWSKI J., KUŚ J., SZCZUKOWSKI S., STOLARSKI M. J. Productivity of Energy Crops. (In:) Teamwork by P. Bocian, T. Golec, J. Rakowski titled “Modern Technology of Biomass Production and Use for Energy Purposes,” Power Engineering Institute, Warsaw, 34-49, 2010 [In Polish].
  • 35. MELIN G., LARSSON S. Agrobransle AB – world leading company on short rotation coppice willow. 14th European Biomass Conference, 17-21 October 2005, Paris, France, 36, 2005.
  • 36. MOLA-YUDEGO B. Trends and productivity improvements from commercial willow plantations in Sweden during the period 1986-2000. Biomass Bioenerg. 35, 446, 2011.
  • 37. GUIDI W., TOZZINI C., BONARI E. Estimation of chemical traits in poplar short-rotation coppice at stand level. Biomass Bioenerg. 33, (12), 1703, 2009.
  • 38. LAUREYSENS I., PELLIS A., WILLEMS J., CEULEMANS R. Growth and production of a short rotation coppice culture of poplar. III. Second rotation results. Biomass Bioenerg. 29, 10, 2005.
  • 39. BENETKA V., VRÁTNÝ F., ŠÁLKOVÁ I. Comparison of the productivity of Populus nigra L. with an interspecific hybrid in a short rotation coppice in marginal areas. Biomass Bioenerg. 31, 367, 2007.
  • 40. CHRISTERSSON L. Wood production potential in poplar plantations in Sweden. Biomass Bioenerg. 34, 1289, 2010.
  • 41. LABRECQUE M., TEODORESCU T. L. Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenerg. 29, (1), 1-9, 2005.
  • 42. GRUENEWALD H., BRANDT B. K. V., SCHNEIDER B. U., BENS O., KENDZIA G., HÜTTL R. F. Agroforestry systems for the production of woody biomass for energy transformation purposes, Ecol. Eng. 29, 319, 2007.
  • 43. BONGARTEN B. C., HUBER D. A., APSLEY D. K. Environmental and genetic influences on short-rotation biomass production of black locust (Robinia pseudoacacia L.) in the Georgia Piedmont. Forest Ecol. Manag. 5, 315, 1992.
  • 44. DICKMANN D. I., STEINBECK K., SKINNER T. Leaf area and biomass in mixed and pure plantations of sycamore and black locust in the Georgia Piedmont. Forest Sci. 31, 509, 1985.
  • 45. GRASSI G., BRIDGWATER A. V. The european community energy from biomass research and development program. Int. J. Solar Energy.10, 127, 1991.
  • 46. GEYER W. A. Biomass production in the Central Great Plains USA under various coppice regimes. Biomass Bioenerg. 30, 778, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e590321d-bea7-4736-9bf5-ab59aeeaeb71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.