PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 77 |

Tytuł artykułu

Dynamic site index model and trends in changes of site productivity for Alnus glutinosa (L.) Gaertn. in southern Poland

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Black alder is naturally widespread across all of Europe and has an increasing importance for forest ecosystems. Thanks to the considerable tolerance to adverse climatic and edaphic environmental conditions black alder is important both in open landscapes and can also be involved in the rehabilitation of disturbed soils. Assessment of site productivity is essential for providing a frame of reference for silvicultural diagnosis and prescription in order to ensure the sustainability of existing and newly established ecosystems. The most accepted method of evaluating site productivity is the site index (SI). The aim of the presented research was to develop the SI model for black alder in southern Poland. The developed SI model was used as a tool in order to test the research hypothesis assuming the increase in site productivity for black alder in southern Poland. The research material for development of SI model were stem analysis data from 180 research plots. Both, the local model parameter, which was estimated individually for every tree, and the other parameters estimated globally for the whole data set were estimated simultaneously. Changes in site productivity were analyzed on research plots and a set of 12,974 stands from the forest inventory database. Site indices calculated using the developed model are negatively correlated with age/ positively correlated with establishment year of the stands. This confirms the existence of the phenomenon of increasing site productivity for black alder. During the last century site productivity measured with site index increased on average 5 m. Therefore, black alder that belongs to the fast-growing tree species should be considered of the increasing importance for forest management.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Opis fizyczny

p.45–57,fig.,ref.

Twórcy

Bibliografia

  • Albert M & Schmidt M (2010) Climate-sensitive modelling of site-productivity relationships for Norway spruce (Picea abies (L.) Karst.) and common beech (Fagus sylvatica L.). Forest Ecology and Management 259: 739–749. doi:10.1016/j.foreco.2009.04.039.
  • Barrio Anta M & Diéguez-Aranda U (2005) Site Quality of pedunculate oak (Quercus robur L.) stands in Galicia (northwest Spain). European Journal of Forest Research 124: 19–28.
  • BDL, Forest Data Bank (2014) www.bdl.lasy.gov.pl.
  • Bontemps JD & Bouriaud O (2013) Predictive approaches to forest site productivity: recent trends, challenges and future perspectives. Forestry 87: 109–128. doi:10.1093/forestry/cpt034.
  • Bruchwald A, Dmyterko E, Dudzińska M & Wirowski M (2001) Analiza faz wzrostu wysokości olszy czarnej (Alnus glutinosa (L.) Gaertn.). Sylwan 145: 5–11.
  • Bruchwald A, Dudzińska M & Wirowski M (2003) Model wzrostu dla olszy czarnej (Alnus glutinosa (L.) Gaertn.). Sylwan 147: 3–10.
  • Bruchwald A, Michalak K, Wróblewski L & Zasada M (2000) Wzrost wysokości sosny w różnych regionach Polski: Przestrzenne zróżnicowanie wzrostu sosny. Fundacja Rozwoju SGGW, Warszawa, pp. 77–83.
  • Bruchwald A & Zasada M (2010) Model wzrostu modrzewia europejskiego (Larix decidua Mill.). Sylwan 154: 615–624.
  • Carmean WH (1972) Site index curves for upland oaks in the Central States. Forest Science 18: 109–120.
  • Chen HYH, Klinka K & Kabzems RD (1998) Site index, site quality, and foliar nutrients of trembling aspen: relationships and prediction. Canadian Journal of Forest Research 28: 1743–1755.
  • Cieszewski CJ, Harrison M & Martin SW (2000) Practical methods for estimating non-biased parameters in self-referencing growth and yield models. University of Georgia, PMRC-TR 2000-7.
  • Cieszewski CJ (2001) Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Canadian Journal of Forest Research 31: 165–173.
  • Cieszewski CJ (2003) Developing a well-behaved dynamic site equation using a modified hossfeld IV function Y3 = (axm)/(c + x m–1), a simplified mixed-model and scant subalpine fir data. Forest Science 49: 539–554.
  • Cieszewski CJ & Bailey L (2000) Generalized algebraic difference approach: Theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science 46: 116–126.
  • Cieszewski CJ & Zasada M (2003) Wyprowadzanie ogólnych dynamicznych równań bonitacyjnych za pomocą uniwersalnej metody różnic algebraicznych. Sylwan 147: 40–46.
  • Claessens H, Oosterbaan A, Savill P & Rondeux J (2010) A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83: 163–175. doi:10.1093/forestry/cpp038.
  • Elfving B & Kiviste A (1997) Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. Forest Ecology and Management 98: 125–134.
  • Elfving B & Tegnhammar L (1996) Trends of tree growth in Swedish forests 1953−1992: An analysis based on sample trees from the national forest inventory. Scandinavian Journal of Forest Research 11: 26–37. doi:10.1080/02827589609382909.
  • Glavac V (1972) Über höhenwuchsleistung und wachstungoptimum der schwarzerle auf vergleichbaren standorten in Nord-, Mittel- und Südeuropa. Schriftenreihe der Forstlichen Fakultät der Universität Göttingen 45: 61.
  • Hägglund B (1981) Evaluation of forest site productivity. Commonwealth Forest Bureau Forest Abstract Reviews 42: 515–527.
  • Hytönen J & Saarsalmi A (2015) Biomass production of coppiced grey alder and the effect of fertilization. Silva Fennica 49: 1–16. doi:10.14214/sf.1260.
  • Johansson T (1999) Site index curves for common alder and grey alder growing on different types of forest soil in Sweden. Scandinavian Journal of Forest Research 14: 441–453. doi:10.1080/02827589950154140.
  • Krzaklewski W, Pietrzykowski M & Woś B (2012) Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecological Engineering 49: 35–40. doi:10.1016/j.ecoleng.2012.08.026.
  • Metslaid S, Sims A, Kangur A, Hordo M, Jõgiste K, Kiviste A & Hari P (2011) Growth patterns from different forest generations of Scots pine in Estonia. Journal of Forest Research 16: 237–243. doi:10.1007/s10310–011–0275–4.
  • Monserud RA (1984) Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. Forest Science 4: 943–965.
  • Nigh GD & Courtin PJ (1998) Height models for Red Alder (Alnus rubra Bong.) in British Columbia. New Forests 16: 59–70. doi:10.1023/A:1006561502635.
  • Nigh GD & Love BA (1999) A model for estimating juvenile height of lodgepole pine. Forest Ecology and Management 123: 157–166. doi:10.1016/S0378–1127(99)00019–5.
  • Nord-Larsen T (2006) Developing dynamic site index curves for European beech (Fagus sylvatica L.) in Denmark. Forest Science 52: 173–181. doi:10.1080/02827580902795036.
  • Nord-Larsen T, Mielby H & Skovsgaard JP (2009) Site-specific height growth models for six common tree species in Denmark. Scandinavian Journal of Forest Research 24: 194–204.
  • Nothdurft A, Wolf T, Ringeler A, Böhner J & Saborowski J (2012) Spatio-temporal prediction of site index based on forest inventories and climate change scenarios. Forest Ecology and Management 279: 97–111. doi:10.1016/j.foreco.2012.05.018.
  • Palahí M, Tomé M, Pukkala T, Trasobares A & Montero G (2004) Site index model for Pinus sylvestris in north-east Spain. Forest Ecology and Management 187: 35–47.
  • Payandeh B (1974) Formulated site index curves for major timber species in Ontario. Forest Science 20: 143–144.
  • Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model. Springer Verlag, Berlin Heidelberg.
  • Pretzsch H, Biber P & Ďursky J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. Forest Ecology and Management 162: 3–21.
  • R DCT (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, http://www.R-project.org.
  • Raulier F, Lambert MC, Pothier D & Ung CH (2003) Impact of dominant tree dynamics on site index curves. Forest Ecology and Management 184: 65–78. doi:10.1016/S0378–1127(03)00149-X.
  • Roisin P & Thill A (1972) Excursions forestières en Yougoslavie. Bulletin de la Société Royale de Forestière de Belgique 79: 109–164.
  • Schwappach A (1908) Die kiefer. Wirtschaftliche und statische untersuchungen der forstlichen abteilung der hauptstation des forstlichen versuchswechungens in Eberswalde. Verlag J. Neumann.
  • Schwappach A (1943) Ertragstafeln der wichtigeren Holzarten in tabellarischer und graphischer form. Verlag der Handelsdruckerei Merkur, Prag.
  • Sharma RP, Brunner A & Eid T (2012) Site index prediction from site and climate variables for Norway spruce and Scots pine in Norway. Scandinavian Journal of Forest Research 27: 619–636. doi:10.1080/02827581.2012.685749.
  • Skovsgaard JP & Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81: 13–31. doi:10.1093/forestry/cpm041.
  • Socha J (2008) Effect of topography and geology on the site index of Picea abies in the West Carpathian, Poland. Scandinavian Journal of Forest Research 23: 203–213.
  • Socha J, Coops N & Ochał W (2016) Assessment of age bias in site index equations. iForest – Biogeosciences and Forestry 9: 402–408. doi:10.3832/ifor1548–008.
  • Socha J, Ochał W, Grabczyński S & Maj M (2015) Modele bonitacyjne dla gatunków lasotwórczych Polski opracowane na podstawie tablic zasobności. Sylwan 159: 639–649.
  • Socha J & Orzeł S (2013) Dynamiczne krzywe bonitacyjne dla sosny zwyczajnej (Pinus sylvestris L.) z południowej Polski. Sylwan 157: 26–38.
  • Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A & de Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. Forest Ecology and Management 258: 1735–1750. doi:10.1016/j.foreco.2008.09.057.
  • Spiecker H, Mielikäinen K, Köhl M & Skovsgaard JP (1996) Growth trends in European forests. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/978–3–642–61178-0.
  • Splechtna BE (2001) Height growth and site index models for Pacific silver fir in southwestern British Columbia. BC Journal of Ecosystems and Management 1: 1–14.
  • Szymkiewicz B (2001) Tablice zasobności i przyrostu drzewostanów. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa.
  • Tegnhammar L (1992) On the estimation of site index for Norway spruce. Department of Forest Survey, Swedish University of Agricultural Sciences. Report 53, 259.
  • Thibaut A, Claessens H & Rondeux J (2004) Site index curves for Alnus glutinosa (L.) Gaertn. in southern Belgium: effect of site on curve shape. Forestry 77: 157–171. doi:10.1093/forestry/77.2.157
  • Thill A & Mathy P (1980) La culture des essences précieuses en Belgique. Annales de Gembloux 86: 1–32.
  • Turok J, Erikson G, Kleinschmit J & Canger S (1996) Noble hardwoods network. Report of the first meeting, International Plant Genetic Resources Institute, Rome, Italy.
  • Uri V, Aosaar J, Varik M, Becker H, Ligi K, Padari A, Kanal A & Lõhmus K (2014) The dynamics of biomass production, carbon and nitrogen accumulation in grey alder (Alnus incana (L.) Moench) chronosequence stands in Estonia. Forest Ecology and Management 327: 106–117. doi:10.1016/j.foreco.2014.04.040.
  • Vacek Z, Vacek S, Podrázský V, Král J, Bulušek D, Putalová T, Baláš M & Kalousková I (2016) Structural diversity and production of alder stands on former agricultural land at high altitudes. Dedrobiology 75: 31–44.
  • Yue C, Mäkinen H, Klädtke J & Kohnle U (2014) An approach to assessing site index changes of Norway spruce based on spatially and temporally disjunct measurement series. Forest Ecology and Management 323: 10–19. doi:10.1016/j.foreco.2014.03.031.
  • Zasada M (2002) Określanie bonitacji za pomocą młodocianego przyrostu wysokości w drzewostanach sosnowych. Sylwan 146: 21–29.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e56b1fa6-cd17-4df9-a387-bc0e6ed05b1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.