PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Stability and support analysis of coverage rock-soil aggregate of longhuguan landslide

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Rock-soil aggregate landslides are distributed all over the world and have done great harm to transportation networks, buildings, personal safety, and city construction. Although landslide studies usually focus on the slope of the single homogeneous material, few slopes are composed of or covered by various complicated geomaterials. This paper proposes a calculation model of the slope covered by rock-soil aggregate and analyzes Longhuguan landslide in Guangxi, China, considering rainfall. Fully considering the weak surface, a support design plan is given.The unbonded cable is taken to support the landslide, the concrete beams are adopted on the angle turning point of the surface, and the slide-resistant piles are used to jointly support the front edge of the slope. Top fissures are blocked and landslide drainage measures are taken. The displacement monitoring proves that the support is effective. This study can provide many references for landslide support and analysis covered by rock-soil aggregate.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2747-2757,fig.,ref.

Twórcy

autor
  • School of Water Resource & Environment, China University of Geosciences, Beijing, 100083, China
  • MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
  • Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China
autor
  • Guangxi Transportation Research Institute, Nanning, Guangxi 530007, China

Bibliografia

  • 1. PHAM B.T., BUI D.T., PRAKASH I., DHOLAKIA M.B. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 149, 52, 2017.
  • 2. OZDEMIR A. Preventing natural hazard risks through sustainable site design. Polish Journal of Environmental Studies, 17 (4), 457, 2008.
  • 3. DELANEY K.B., EVANS S.G. The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: Review, remote sensing analysis, and process modelling. Geomorphology, 246, 377, 2015.
  • 4. SAKAI H., FUJII R., SUGIMOTO M., SETOGUCHI R., PAUDEL M.R. Two times lowering of lake water at around 48 and 38 ka, caused by possible earthquakes, recorded in the Paleo-Kathmandulake, central Nepal Himalaya. Earth Planets And Space, 68 (1), 1, 2016.
  • 5. KIRBY J.T., SHI F.Y., NICOLSKY D., MISRA S. The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: a comparison of modeling approaches. Landslides, 13 (6), 1421, 2016.
  • 6. LATCHAROTE P., SUPPASRI A., IMAMURA F., AYTORE B., YALCINER A.C. Possible worst-case tsunami scenarios around the Marmara Sea from combined earthquake and landslide sources. Pure And Applied Geophysics, 173 (12), 3823, 2016.
  • 7. ZANIBONI F., ARMIGLIATO A., TINTI S. A numerical investigation of the 1783 landslide-induced catastrophic tsunami in Scilla, Italy. Natural Hazards, 84, S455, 2016.
  • 8. BRENNING A., SCHWINN M., RUIZ-PAEZ A.P., MUENCHOW J. Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Natural Hazards And Earth System Sciences, 15 (1), 45, 2015.
  • 9. SUN JICHAO. Survey and research frame for ground sediment. Environmental Science and Pollution Research, 23 (19), 18960, 2016.
  • 10. SIDLE ROY C., BOGAARD THOM A. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Science Reviews, 159, 275, 2016.
  • 11. GARIANO STEFANO LUIGI, GUZZETTI FAUSTO. Landslides in a changing climate. Earth-Science Reviews, 162, 227, 2016.
  • 12. MAHMOOD K., KIM J.M., ASHRAF M., ZIAURREHMAN. The effect of soil type on matric suction and stability of unsaturated slope under uniform rainfall. Ksce Journal of Civil Engineering, 20 (4), 1294, 2016.
  • 13. TIWARI B., AJMERA B. Reduction in fully softened shear strength of natural clays with NaCl leaching and its effect on slope stability. Journal of Geotechnical and Geoenvironmental Engineering, 141 (1), 04014086, 2015.
  • 14. SUN J.C., WANG G.Q., GAO Q.C. Numerical simulation of RSA seepage based on random structure model. Advanced Materials Research, 33-37 (2), 779, 2008.
  • 15. SUN JICHAO. Effects and numerical simulation of rain infiltration on soil-rock aggregate slope stability. China university of mining science and technology (Beijing), Beijing, 2006.
  • 16. BECKER P.A., IDELSOHN S.R. A multiresolution strategy for solving landslides using the Particle Finite Element Method. Acta Geotechnica, 11 (3), 643, 2016.
  • 17. MOHAMMADI S., TAIEBAT H. Finite element simulation of an excavation-triggered landslide using large deformation theory. Engineering Geology, 205, 62, 2016.
  • 18. ANTOLINI F., BARLA M., GIGLI G., GIORGETTI A., INTRIERI E., CASAGLI N. Combined finite-discrete numerical modeling of runout of the Torgiovannetto di Assisi rockslide in central Italy. International Journal of Geomechanics, 16 (6), 04016019, 2016.
  • 19. LU C.Y., TANG C.L., CHAN Y.C., HU J.C., CHI C.C. Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan. Engineering Geology, 183, 14, 2014.
  • 20. SUN JICHAO. Ground sediment transport model and numerical simulation. Polish Journal of Environmental Studies, 25 (4), 1691, 2016.
  • 21. LIN C.H., LIN M.L. Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan using the discrete element method. Engineering Geology, 197, 172, 2015.
  • 22. DRAGICEVIC SLAVOLJUB, M SZ ROS MINUCS R, DJURDJIĆ SNEŽANA, PAVIĆ DRAGOSLAV, NOVKOVIĆ IVAN and TOŠIĆ RADISLAV. Vulnerability of national parks to natural hazards in the Serbian Danube region. Polish Journal of Environmental Studies, 22 (4), 1053, 2013.
  • 23. JOHARI A., MOUSAVI S., NEJAD A.H. A seismic slope stability probabilistic model based on Bishop’s method using analytical approach. Scientia Iranica, 22 (3), 728, 2015.
  • 24. BISHOP A W. The use of the slip circle in stability analysis of slope. Géotechnique, 5 (1), 7, 1955.
  • 25. BAFGHI A.R.Y., VERDEL T. Sarma-based key-group method for rock slope reliability analyses. International Journal for Numerical And Analytical Methods In Geomechanics, 29 (10), 1019, 2005.
  • 26. GUPTA V., BHASIN R.K., KAYNIA A.M., KUMAR V., SAINI A.S., TANDON R.S., PABST T. Finite element analysis of failed slope by shear strength reduction technique: a case study for Surabhi Resort Landslide, Mussoorie township, Garhwal Himalaya. Geomatics Natural Hazards & Risk, 7 (5), 1677, 2016.
  • 27. KELESOGLU M.K. The evaluation of three-dimensional effects on slope stability by the strength reduction method. Ksce Journal of Civil Engineering, 20 (1), 229, 2016.
  • 28. KRABBENHOFT K., LYAMIN A.V. Strength reduction finite-element limit analysis. Geotechnique Letters, 5 (4), 250, 2015.
  • 29. SHOOSHPASHA I., AMIRDEHI H.A. Evaluating the stability of slope reinforced with one row of free head piles. Arabian Journal Of Geosciences, 8 (4), 2131, 2015.
  • 30. SUN JICHAO, LIAO QIAN. Fractal of random pore and directivity of soil seepage. Fresenius Environmental Bulletin, 25 (10), 4093, 2016.
  • 31. TAYLOR D.W. Fundamentals of soil mechanics. New York, John Wiley and Sons Inc, 1948.
  • 32. KOVACS G. Seepage hydraulics. Amsterdam, Elsevier Scientific Publishing Company, 1981.
  • 33. MESRI GHOLAMREZA, CHOI YK. Settlement analysis of embankments on soft clays. Journal of Geotechnical Engineering, 111 (4), 441, 1985.
  • 34. INDRARATNA BUDDHIMA, RADAMPOLA SUJEEWA Analysis of critical hydraulic gradient for particle movement in filtration. Journal of Geotechnical and Geoenvironmental Engineering, 128, 347, 2002.
  • 35. TARANTINO ALESSANDRO, MOUNTASSIR GR INNE EL. Making unsaturated soil mechanics accessible for engineers: Preliminary hydraulic-mechanical characterisation & stability assessment. Engineering Geology, 165, 89, 2013.
  • 36. ARAM M. RAHEEM, MOHAMMAD S. JOSHAGHANI Modeling of shear strength-water content relationship of ultra-soft clayey soil. International Journal of Advanced Research, 4 (4), 537, 2016.
  • 37. XIAO XUEPEI, LI TIANBIN Analysis of shear strength affected by water content of char weak rock in one certain landslide. Research of Soil & Water Conservation, 12 (1), 75, 2005.
  • 38. HU ZHANFEI, YANRONG. Experimental study of the shear strength of soft soil with different initial water content. Shanghai Gology, 77, 38, 2001.
  • 39. SUN J.C., GAO Q.C., WANG H.B., LI Y.M. Numerical simulation of coupled rainfall and temperature of unsaturated soils. Key Engineering Materials, 306-308 (2), 1433, 2006.
  • 40. SUN J.C., WANG G.Q. Riverbank collapse mechanism under scouring. Germany, VDM Publishing House, 2010.
  • 41. SUN JICHAO, WANG GUANGQIAN, SUN QICHENG Crack spacing of unsaturated soils in the critical state. Chinese Science Bulletin, 54 (12), 2008, 2009.
  • 42. SUN JICHAO Mathematical model coupling seepage and sedimentation of solid particles in porous media. Fresenius Environmental Bulletin, 24 (5), 1735, 2015.
  • 43. SUN JICHAO, WANG GUANGQIAN Transport model of underground sediment in soils. Scientific World Journal, 367918, 2013.
  • 44. LEI ZHIDONG, YANG SHIXIU, XIE SENCHUAN. water dynamics in soils. Beijing, China, Qinghua University Press, 1988.
  • 45. YANG LIU. The relationship between shear strength and water content of Hefei expansive soil and its engineering applying. Hefei University, Hefei, 2003.
  • 46. SUN JICHAO, WANG GUANGQIAN Research on underground water pollution caused by geological fault through radioactive stratum. Journal of Radioanalytical & Nuclear Chemistry, 297 (1), 27, 2013.
  • 47. SUN JICHAO, LIAO QIAN, WANG GUANGQIAN Root absorbing and seepage model in weightless environment and space. Bangladesh Journal of Botany, 44 (5), 779, 2015.
  • 48. SUN JICHAO, LIAO QIAN, WANG GUANGQIAN Not light or gravity but water guiding root to grow. Optik, 127 (8), 3834, 2016.
  • 49. GRIFFITHS D.V., LANE P.A. Slope stability analysis by finite elements. Geotechnique, 49 (3), 387, 1999.
  • 50. DAWSON E.M., ROTH W.H., DRESCHER A. Slope stability analysis by strength reduction. Geotechnique, 49 (6), 835, 1999.
  • 51. BERISAVLJEVIC Z., BERISAVLJEVIC D., CEBASEK V., RAKIC D. Slope stability analyses using limit equilibrium and strength reduction methods. Gradevinar, 67 (10), 975, 2015.
  • 52. MUKHLISIN M., BAIDILLAH M.R., IBRAHIM A., TAHA M.R. Effect of soil hydraulic properties model on slope stability analysis based on strength reduction method. Journal of the Geological Society of India, 83 (5), 586, 2014.
  • 53. TACHIBANA S, MASUYA HIROSHI, NAKAMURA S. Performance based design of reinforced concrete beams under impact. Natural Hazards and Earth System Science, 10 (6), 1069, 2010.
  • 54. AL-DEFAE A.H., KNAPPETT J.A. Centrifuge modeling of the seismic performance of pile-reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering, 140 (6), 04014014, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e4d3c7c0-cc31-44fe-9f0a-9cf801b0b128
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.