PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 19 | 4 |

Tytuł artykułu

Effects of udder infections with Staphylococcus xylosus and Staphylococcus warneri on the composition and physicochemical changes in cows milk

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was an evaluation of the effects of two species of coagulase negative staphylococci (CNS), Staphylococcus xylosus and Staphylococcus warneri, on the changes in technological parameters of cows’ milk. The study was conducted in a herd of Slovak Pied cattle breed (with share of HF blood). Based on the performance results from three subsequent months, cows in the 2nd and 3rd lactation with SCC up to 200 thousand/ml (8 heads, 32 quarters), and above 800 thousand/ml (8 heads, 32 quarters), after the 4th month of lactation, were selected. The samples were subjected to microbiological analysis, total bacteria count, somatic cell count; basic milk composition and physicochemical properties were also examined. The research has found the impact of bacterial infection on the increasing (p<0.05) of the number of somatic cells and a decrease (p<0.01) in protein levels in milk due to both types of staphylococci. There was a significant (p<0.05) reduction in C8: 0, C10: 0 and the total amount of saturated fatty acids in the milk of the infected cows in comparison to the healthy ones. The research also revealed higher (p<0.01) levels of C14: 0 and C20: 1 in milk from the healthy cows.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.841-848,fig.,ref.

Twórcy

autor
  • Department of Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenskeho 73, Kosice 041 81, Slovak Republic
  • Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland
autor
  • Department of Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenskeho 73, Kosice 041 81, Slovak Republic
autor
  • Department of Cattle Breeding and Milk Production, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38c, 51-630 Wroclaw, Poland
autor
  • Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland
autor
  • Department of Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenskeho 73, Kosice 041 81, Slovak Republic
autor
  • Clinical Laboratory for Large Animals, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
autor
  • Department of Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenskeho 73, Kosice 041 81, Slovak Republic

Bibliografia

  • Awale MM, Dudhatra GB, Kumar A, Chauhan BN, Kamani DR, Modi CM, Patel HB, Mody SK (2012) Bovine mastitis: a threat to economy. Open Access Scientific Reports 1: 295.
  • Barłowska J, Litwińczuk Z, Brodziak A, Chabuz W (2012) Effect of the production season on nutritional value and technological suitability of milk obtained from intensive (TMR) and Traditional Feeding system of cows. J Microbiol Biotech Food Sci 1: 1205-1220.
  • Bortolami A, Fiore E, Gianesella M, Corro M, Catania S, Morgante M (2015) Evaluation of the udder health status in subclinical mastitis affected dairy cows through bacteriological culture, somatic cell count and thermographic imaging. Pol J Vet Sci 18: 799-805.
  • Batavani RA, Asri S, Naebzadeh H (2007) The effect of subclinical mastitis on milk composition in dairy cows. Iran J Vet Res 8: 205-211.
  • Bochniarz M, Wawron W, Szczubial M (2013) Coagulase-negative staphylococci (CNS) as an aetiological factor of mastitis in cows. Pol J Vet Sci 16: 487-492.
  • Cervinkova D, Vlkova H, Borodacova I, Makovcova J, Babak V, Lorencova A, Vrtkova I, Marosevic D, Jaglic Z (2013) Prevalence of mastitis pathogens in milk from clinically healthy cows. Vet Med 58: 567-575.
  • Chang L, Yang Z, Wu H, Chen Y, Shi X, Mao Y, Cen N, Liang X, Yin Z (2011) Comparative Study on Fatty Acid Composition between Normal Milk and Subclinical Mastitis Milk of Dairy Cow. Acta Vet et Zoot Sinica 42: 44-47.
  • Christie W, William S (1973) Lipid analysis. Isolation, separation, identification and structural analysis of lipids. The isolation of lipids from tissues. Pergamon Press, Oxford pp 39-40.
  • Christopherson SW, Glass RL (1969) Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. J Dairy Sci 52: 1289-1290.
  • Coulon JB, Gasqui P, Barnouin J, Ollier A, Pradel P, Pomiés D (2002) Effect of mastitis and related-germ on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim Res 51: 383-393.
  • Forsbäck L, Lindmark-Mansson H, Andren A, Svennersten-Sjaunja K (2010) Evaluation of quality changes in udder quarter milk from cows with low-to-moderate somatic cell counts. Animal 4: 617-626.
  • Fulya T (2011) Microbiological and Chemical Properties of Raw Milk Consumed in Burdur. J Anim Vet Adv 10: 635-641.
  • Godden SM, Lissemore KD, Kelton DF, Leslie KE, Walton JS, Lumsden JH (2001) Factors associated with milk urea concentration in Ontario dairy cows. J Dairy Sci 84: 107-114.
  • Halasa T, Huijps K, Osteras O, Hogeveen H (2007) Eco-nomic effects of bovine mastitis and mastitis manage-ment: a review. Vet Q 29: 18-31.
  • Hamed, H, Truijllo AJ, Juan B, Guamis B, ElFeki A, Gargouri A (2012) Interrelationships between somatic cell counts, lactation stage and lactation number and their influence on plasmin activity and protein fraction distribution in dromedary (Camelus dromedaries) and cow milks. Small Ruminant Res 105: 300-307.
  • Harmon RJ. (2001) Somatic cell counts: A primer. Madison to Reno, National Mastitis Council Annual Meeting Proceedings pp 3-9.
  • Henao-Velásquez AF, Mxnera-Bedoya OD, Herrera AC, Agudelo-Trujillo JH, Cerón-Munoz MF (2014) Lactose and milk urea nitrogen: fluctuations during lactation in Holstein cows. R Bras Zootec 43: 479-484.
  • Kaliwal BB, Sadashiv SO, Kurjogi MM, Sanakal RD (2011) Prevalence and antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine mastitis. Vet World 4: 158-161.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Lehloenya KV, Stein DR, Allen DT, Selk GE, Jones DA, Aleman MM, Rehberger TG, Mertz KJ, Spicer LJ (2008) Effects of feeding yeast and propionibacteria to dairy cows on milk yield and components, and reproduction. J Anim Physiol Anim Nutr (Berl) 92: 190-202.
  • Leitner G, Krifucks O, Merin U, Lavi Y, Silanikove N (2006) Interactions between bacteria type, proteolysis of casein and physico-chemical properties of bovine milk. Int Dairy J 16: 648-654.
  • Leitner G, Merin U, Silanikove N (2011) Effects of glandular bacterial infection and stage of lactation on milk clotting parameters: comparison among cows, goats and sheep. Int Dairy J 21: 279-285.
  • Le Roux Y, Laurent F, Moussaoui F (2003) Polymorphonuclear proteolytic activity and milk composition change. Vet Res 34: 629-645.
  • Lidiane CS, Pereira IA, Pribul BR, Oliva MS, Coelho SM, Souza MM (2012) Antimicrobial resistance and detection of mecA and blaZ genes in coagulase-negative Staphylococcus isolated from bovine mastitis. Pesq Vet Bras 32: 692-696.
  • Lim GH, Leslie KE, Kelton DF, Duffield TF, Timms LL, Dingwell RT (2007) Adherence and efficacy of an external teat sealant to prevent new intramammary infections in the dry period. J Dairy Sci 90: 1289-1300.
  • Malek dos Reis CB, Barreiro JR, Mestieri L, Porcionato MA, dos Santos MV (2013) Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows. BMC Vet Res 9: 67.
  • Ogola H, Shitandi A, Nanua J (2007) Effect of mastitis on raw milk compositional quality. J Vet Sci 8: 237-242.
  • Østerås O, Szlverzd L, Reksen O (2006) Milk Culture Results in a Large Norwegian Survey – Effects of Season, Parity, Days in Milk, Resistance and Clustering. J Dairy Sci 89: 1010-1023.
  • Park YW, Juárez M, Ramos M, Haenlein GF (2007) Physico-chemical characteristics of goat and sheep milk. Small Ruminant Res 68: 88-113.
  • Pecka E, Dobrzański Z, Zachwieja A, Szulc T, Czyż K (2012) Studies of composition and major protein level in milk and colostrum of mares. Anim Sci J 83: 162-168.
  • Pecka E, Zachwieja A, Tumanowicz J (2013) Technological parameters of milk depending onthe cow housing system, nutrition system, age and number of somatic cells. Przemysł Chemiczny 92: 1087-1091.
  • Pecka-Kiełb E, Vasil M, Zachwieja A, Zawadzki W, Elečko J, Zigo F, Illek J, Farkašova Z (2016) An effect of mammary gland infection caused by Streptococcus uberis on composition and physicochemical changes of cows’ milk. Pol J Vet Sci 19: 49-55.
  • Pyörälä S (2008) Mastitis in post-partum dairy cows. Reprod Domest Anim 43 (Suppl 2): 252-259.
  • Pyörälä S, Taponen S (2009) Coagulase-negative staphylococci-emerging mastitis pathogens. Vet Microbiol 134: 3-8.
  • Pyörälä S (2003) Indicators of inflammation in the diagnosis of mastitis. Vet Res 34: 565-578.
  • Rumi MV, Huguet MJ, Bentancor AB, Gentilini ER (2013) The icaA gene in staphylococci from bovine mastitis. J Infect Dev Ctries 7: 556-560.
  • Santos JE, Cerri RL, Ballou MA, Higginbotham GE, Kirk JH (2004) Effect of timing of first clinical mastitis occurrence on lactational and reproductive performance of Holstein dairy cows. Anim Reprod Sci 80: 31-45.
  • Sawant AA, Gillespie BE, Oliver SP (2009) Antimicrobial susceptibility of coagulase- negative Staphylococcus species isolated from bovine milk. Vet Microbiol 134: 73-81.
  • Seegers H, Fourichon C, Beaudeau F (2003) Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 34: 475-491.
  • Seixas R, Varanda D, Bexiga R, Tavares L, Oliveira M (2015) Biofilm-formation by Staphylococcus aureus and Staphylococcus epidermidis isolated from subclinical mastitis in conditions mimicking the udder environment. Pol J Vet Sci 18: 787-792.
  • Sobczuk-Szul M, Wielgosz-Groth Z, Nogalski Z, Mochon M, Rzemieniewski A, Pogorzelska-Przybyłek P (2015). Changes in the fatty acid profile of cow’s milk with different somatic cell counts during lactation. Vet Med Zoot 69: 52-57.
  • Taponen S, Pyörälä S (2009) Coagulase-negative staph-ylococci as cause of bovine mastitis-not so different from Staphylococcus aureus? Vet Microbiol 134: 29-36.
  • Taponen S, Simojoki H, Haveri M, Larsen HD, Pyörälä S (2006) Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Vet Microbiol 115: 199-207.
  • Tenhagen BA, Koster G, Wallmann J, Heuwieser W (2006) Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J Dairy Sci 89: 2542-2551.
  • Türkyilmaz S, Kaya O (2006) Determination of some Virulence Factors in Staphylococcus Spp. Isolated from Various Clinical Samples. Turk J Vet Anim Sci 30: 127-132.
  • Varhimo E, Varmanen P, Fallarero A, Skogman M, Pyörälä S, Livanainen A, Sukura A, Vuorela P, Savijoki K (2011) Alpha- and β-casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Vet Microbiol 149: 381-389.
  • Vasil M, Elečko J, Zigo F, Farkašová Z (2012) Occurrence of some pathogenity factors in coagulase negative staphylococci isolated from mastitis milk in dairy cows. Potravinarstvo 6: 60-63.
  • Zielak-Steciwko A, Pecka E, Kęsek M, Kuczaj M, Szulc T (2014) Changes in the proportion of proteins fractions depending on lactoferrin polymorphism gene and the somatic Cells Count in the milk of Polish Holstein-Frisian and Polish Red-White cattle. Vet Med Zoot 88: 83-89.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e490c91d-d9fa-4fe3-95bf-a17af477b31d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.