PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 1 |

Tytuł artykułu

The total content of nitrogen in leaves and wood of trees growing in the area affected by the Glogow Copper Smelter

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soils affected by industrial emissions of a copper smelter may contain high amounts of heavy metals. Heavy metal infiltration across the soil is a potential source of groundwater contamination. Simultaneously, many ions, especially Cu2+ and Pb2+, can be accumulated by plants growing within the emission range. The aim of this study was to determine the influence of high Cu and Pb soil contamination on the total nitrogen content in leaves and wood of trees growing in an area exposed to copper smelter emissions. Samples of leaves and wood of Populus robusta L. and Betula pendula L. as well as soil samples were taken from an area affected by industrial emissions, namely from the former sanitary zone of the Głogów Copper Smelter. The samples were collected in 2010. The particle size distribution, pH, organic carbon, total nitrogen and the total content of Cu and Pb in the soil samples were determined. In the plant samples (foliage and trunks), the total nitrogen was assayed. The results were analysed statistically. The following conclusions were drawn: the litter horizon of soils affected by industrial emissions contains high level of heavy metals (3450-5400 mg Cu kg-1, 1020-1500 mg Pb kg-1), exceeding threshold values for industrial areas. Also the humic horizon is characterised by an increased Cu and Pb content: 174-1530 mg Cu kg-1 and 268-702 mg Pb kg-1. The leaves of the tested species contained more nitrogen than the wood, although the birch wood contained more nitrogen then the poplar. There was no difference in the nitrogen content of the annual tree rings of both species. Despite high levels of copper and lead in the tested soils, there was no effect of this factor on the nitrogen content of the leaves, bark and wood of the studied trees.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.137-148,fig.,ref.

Twórcy

autor
  • Department of Land Protection and Reclamation, Institute of Environmental Engineering, University of Zielona Gora, Prof. Z.Szafrana 15, 65-516 Zielona Gora, Poland
autor
  • Department of Land Protection and Reclamation, University of Zielona Gora, Zielona Gora, Poland
autor
  • Department of Land Protection and Reclamation, University of Zielona Gora, Zielona Gora, Poland
  • Department of Land Protection and Reclamation, University of Zielona Gora, Zielona Gora, Poland
  • Department of Land Protection and Reclamation, University of Zielona Gora, Zielona Gora, Poland
autor
  • Department of Land Protection and Reclamation, University of Zielona Gora, Zielona Gora, Poland
autor
  • Department of Land Protection and Reclamation, University of Zielona Gora, Zielona Gora, Poland

Bibliografia

  • Alloway B.J., Ayres D.C. 1997. Chemical principles of environmental pollution. CRC Press Inc.
  • Antosiewicz D.M. 2005. Study of calcium-dependent lead-tolerance on plants differing in their level of Ca-deficiency tolerance. Environ Pollut., 134: 23-34. DOI: 10.1016/j. envpol.2004.07.019.b
  • Arora N.K., Ekta Khare, Singh S., Maheshwari D.K., 2010. Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J. Microbiol. Biotechnol., 26:811-816. DOI 10.1007/s11274-009-0237-6
  • Coll L., Schneider R., Berninger F., Domenicano S., Messier C. 2011. Quantifying the effect of nitrogen-induced physiological and structural changes on poplar growth using a carbon-balance model. Tree Phys., 31(4): 381-390. DOI: 10.1093/treephys/tpr013
  • Domagała-Świątkiewicz I., Gąstoł M. 2013. Effect of nitrogen fertilization on the content of trace elements in cv. Bianca grapevine (Vitis sp.). J. Elem., 18(1): 39-53, DOI: 10.5601/jelem.2013.18.1.03
  • Drzymała S., Spychalski W. 2011. Heavy metals and their fractions in soils around the Głogów copper smelter, Soil Sci Ann., 62(2): 69-78. (in Polish)
  • Enoki T., Kawaguchi H. 2000. Initial nitrogen content and topographic moisture effects on the decomposition of pine needles. Ecol Res., 15: 425-434. DOI: 10.1046/j.1440-1703.2000.00363.x
  • Fortier J., Gagnon D., Truax B., Lambert F. 2010. Nutrient accumulation and carbon sequestration n 6-year-old hybrid poplars in multiclonal agricultural riparian buffer strips, Agr Ecos Env., 137: 276-287. DOI: 10.1016/j.agee.2010.02.013
  • Geoportal 2013. The Spatial Information Infrastructure Geoportal. http://mapy.geoportal.gov.pl/.
  • Garg N., Agg arwal N., 2011. Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul., 30: 286-300. DOI 10.1007/s00344-010-9191-7
  • Hernández L.E., Garate A., Carpena-Ruiz R. 1997. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil, 189: 97-106.
  • Kabata-Pendias A. 2004. Soil-plant transfer of trace elements — an environmental issue. Geoderma, 122: 143-149, DOI: 10.1016/j.geoderma.2004.01.004.
  • Kabata-Pendias A., Bolibrzuch E., Tarłowski P. 1981. Impact of a copper smelter on agricultural environments. Part 1. Contamination of soils. Soil Sci Ann., 32(3): 207-214. (in Polish)
  • Kabata-Pendias A., Pendias H. 2001. Trace elements in soils and plants. CRC Press, Boca Raton.
  • Ke W., Xiang Z., Chen S. 2007. Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environ Exp Bot., 59: 59-67. DOI: 10.1016/j.envexpbot. 2005.10.007
  • Knapowski T., Ralcewicz M., Spychaj-Fabisiak E., Murawska B. 2012. Effect of the rate of nitrogen and zinc on the zinc and copper accumulation in grain of spring triticale cultivar Kargo. J. Elem., 17(3): 421-429. DOI: 10.5601/jelem.2012.17.3.05
  • Kucharski J., Wieczorek K., Wyszkowska J. 2011. Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. J. Elem., 16(4): 577-589. DOI: 10.5601/jelem. 2011.16.4.07
  • Lim P.E., Tay M.G., Mak K.Y., Mohamed N. 2003. The effect of heavy metals on nitrogen and oxygen demand removal in constructed wetlands. Sci Total Env., 301: 13-21. DOI: 10.1016/S0048-9697(02)00304-2
  • Lock K., Criel P., de Schamphelaere K.A.C., van Eeckhout H., Janssen C.R. 2007. Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare). Ecotox Environ Safe., 68: 299-304. DOI: 10.1016/j.ecoenv.2006.11.014
  • Martley E., Gulson B.L., Pfeifer H.R. 2004. Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW, Australia. Sci Total Env., 325: 113-127. DOI: 10.1016/j.scitotenv.2003.11.012
  • Medyńska A., Kabała C., Chodak T., Jezierski P. 2009. Concentration of copper, zinc, lead and cadmium in plants cultivated in the surroundings of Żelazny Most copper ore tailings impoundment. J. Elem., 14(4): 729-736. DOI: 10.5601/jelem.2009.14.4.729-736
  • Medyńska-Juraszek A., Kabała C. 2012. Heavy metal pollution of forest soils affected by the copper industry. J. Elem., 17: 441-451. DOI: 10.5601/jelem.2012.17.3.07
  • Mocek A., Drzymała S., Maszner P. 2006. Genesis, analysis and classification of soils. Publ. House of Agriculture Academy in Poznan, Poznan. (in Polish)
  • Neill C., Gignoux J. 2006. Soil organic matter decomposition driven by microbial growth: A simple model for a complex network of interactions. Soil Biol. Biochem., 38: 803-811. DOI: 10.1016/j.soilbio.2005.07.007
  • Nieboer E., Richardson D.H.S. 1980. The replacement of the nondescript term ‘heavy metals’ by a biological and chemically significant classification of metal ions. Environ. Pollut., B1: 3-26.
  • Odlare M., Pell M. 2009. Effect of wood fly ash and compost on nitrification and denitrification in agricultural soil. Appl. Energy, 86: 74-80. DOI: 10.1016/j.apenergy.2008.04.004
  • Palviainen M., Finér L. 2011. Estimation of nutrient removals in stem-only and whole-tree harvesting of Scots pine, Norway spruce, and birch stands with generalized nutrient equations. Eur J Forest Res., 131: 945-964. DOI: 10.1007/s10342-011-0567-4
  • Pankovič D., Plesničar M. Arsenijevič-Maksimovič I. Petrovič N., Sakač Z., Kastori R. 2000. Effects of nitrogen nutrition on photosynthesis in cd-treated sunflower plants. Ann. Bot-London, 86: 841-847. DOI: 10.1006/anbo.2000.1250
  • Pearson C.H., Halvorson A.D., Moench R.D., Hamm on R.W. 2010. Production of hybrid poplar under short-term, intensive culture in Western Colorado. Ind. Crops Prod., 31: 492-498. DOI: 10.1016/j.indcrop.2010.01.011
  • Peltola R., Salkinoja-Salonen M., Pulkkinen J., Koivunen M., Turpeinen A.R., Aarnio T., Romantschuk M. 2006. Nitrification in polluted soil fertilized with fast- and slow-releasing nitrogen: A case study at a refinery landfarming site. Environ. Pollut., 143: 247-253. DOI: 10.1016/j.envpol.2005.11.029
  • PN-ISO 11466:2002. Soil quality – Extraction of trace elements soluble in aqua regia. (in Polish)
  • Quarity O., Gouia J., Ghorbal M.H. 1997. Responses of bean and tomato plants to cadmium: growth, mineral nutrition and nitrate reduction. Plant Physiol. Biochem., 35: 347-354.
  • Regulation on soil quality standards. 2002. Journal of Law of the Republic of Poland, no 165,item 1359.
  • Rosada J., Grzesiak J. 2009. Distribution of copper, lead and zinc forms in solid phase of soils influenced by emission of copper smelter “Głogów”. Prog Plant Protect., 49(3): 1155-1158. (in Polish) http://www.progress.plantprotection.pl/pliki/2009/49-3-70.pdf
  • Saramäki J., Hytönen J. 2004. Nutritional status and development of mixed plantations of silver birch (Betula pendula Roth) and Downy birch (Betula pubescens Ehrh.) on former agricultural soils. Balt Forest., 10(1): 2-11.
  • Shahbaz M., Tseng M.H., Stuiver C.E.E., Koralewska A., Posthumus F.S., Venema J.H., Parm ar S., Schat H., Hawkesford M.J., de Kok L.J. 2010. Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage. J Plant Physiol., 167: 438-446. DOI: 10.1016/j.jplph.2009.10.016
  • Radha Solanki, Rajesh Dhankhar 2011. Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia, Sect. Botany, 66(2): 195-204. DOI: 10.2478/s11756-011-0005-6
  • Takeda H. 1998. Decomposition processes of litter along a latitudinal gradient. For Sci., 54: 197- 206. DOI: 10.1007/978-94-011-5324-9_20
  • Van Assche F., Clijsters H. 1990. Effects of metals on enzyme activity in plants. Plant. Cell Environ., 13: 195-206.
  • Van Assche F., Cljsters H. 1986. Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/ oxygenase. J. Plant Physiol., 125: 355-360.
  • Wang Y.P., Shi J.Y., Lin Q., Chen X.C., Chen Y.X. 2007. Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J Environ. Sci., 19: 848-853. DOI: 10.1016/S1001-0742(07)60141-7
  • Xiong Z.T., Liu C., Geng B. 2006. Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotox. Environ. Safe., 64: 273-280. DOI: 10.1016/j.ecoenv.2006.02.003

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e45a485d-274f-429c-b5f9-36cc4a52f914
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.