PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 71 | 4 |

Tytuł artykułu

Tight junctions in neurological diseases

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tight junction, one of the type of cell-cell junctions, controls the paracellular permeability across the lateral intercellular space and maintains the cell polarity. Tight junctions consist of transmembrane proteins: members of tight junction-associated MARVEL protein (TAMP) family, claudins and junctional adhesion molecules (JAMs), and various cytoplasmic proteins that are necessary for the correct organization of the integral membrane components of the junction. Alterations in expression or localization of proteins of tight junctions have been described in several neurological disorders including multiple sclerosis, stroke, Alzheimer's disease, Parkinson's disease and epilepsy. In this review, we summarize the most recent data on components of tight junctions and focus on the implication of tight junction dysfunction in neurological diseases.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

71

Numer

4

Opis fizyczny

p.393-408,fig.,ref.

Twórcy

  • Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
autor
  • Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

Bibliografia

  • Ahishali B, Kaya M, Orhan N, Arican N, Ekizoglu O, Elmas I, Kucuk M, Kemikler G, Kalayci R, Gurses C (2010) Effects of levetiracetam on blood-brain barrier distur­bances following hyperthermia-induced seizures in rats with cortical dysplasia. Life Sci 87: 609-619.
  • Anderson JM (1995) Zonula occludens (ZO)-1 and ZO-2: Membrane-associated guanylate kinase homologues (MAGUKs) of the tight junction. Biochem Soc Trans 23: 470-475.
  • Andreeva AY, Krause E, Muller EC, Blasig IE, Utepbergenov DI (2001) Protein kinase C regulates the phosphorylation and cellular localization of occludin. J Biol Chem 276: 38480-38486.
  • Arican N, Kaya M, Kalayci R, Uzun H, Ahishali B, Bilgic B, Elmas I, Kucuk M, Gurses C, Uzun M (2006) Effects of lipopolysaccharide on blood-brain barrier permeability during pentylenetetrazol-induced epileptic seizures in rats. Life Sci 79: 1-7.
  • Arrate MP, Rodriguez JM, Tran TM, Brock TA, Cunningham SA (2001) Cloning of human junctional adhesion mole­cule 3 (JAM3) and its identification as the JAM2 counter- receptor. J Biol Chem 276: 45826-45832.
  • Balda M S, González-Mariscal L, Contreras RG, Macias- Silva M, Torres-Marquez ME, García-Sáinz JA, Cereijido M (1991) Assembly and sealing of tight junctions: possi­ble participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol 122: 193-202.
  • Balda MS, Matter K (1998) Tight junctions. J Cell Sci 111: 541-547.
  • Balda MS, Matter K (2000) Transmembrane proteins of tight junctions. Cell Develop Biol 11: 281-289.
  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation and clinical implications. Neurobiol Dis 16: 1-13.
  • Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Shinjo F, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005) High- throughput mapping of a dynamic signaling network in mammalian cells. Science 307: 1621-1625.
  • Basuroy S, Sheth P, Kuppuswamy D, Balasubramanian S, Ray RM, Rao RK (2003) Expression of kinase-inactive c-Src delays oxidative stress-induced disassembly and accelerates calcium-mediated reassembly of tight junc­tions in the Caco-2 cell monolayer. J Biol Chem 278: 11916-11924.
  • Bauer H, Strelzhammer W, Fuchs R, Weiger TM, Danninger Probst G, Krizbai IA (1999) Astrocytes and neurons express the tight junctional-specific protein occludin in vitro. Exp Cell Res 250: 434-438.
  • Bauer AT, Bürgers HF, Rabie T, Marti HH (2010) Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 30: 837-848.
  • Bazzoni G, Martinez Estrada O, Dejana E (1999) Molecular structure and functional role of vascular tight junctions. Trends Cardiovasc Med 9: 147-152.
  • Bazzoni G (2003) The JAM family of junctional adhesion molecules. Curr Opin Cell Biol 15: 525-530.
  • Bernacki J, Dobrowolska A, Nierwińska K, Małecki A (2008) Physiology and pharmacological role of the blood-brain barrier. Pharmacol Rep 60: 600-622.
  • Betz AL (1996) Alterations in cerebral endothelial cell func­tion in ischemia. Adv Neurol 71: 301-311; discussion 311-313.
  • Bruewer M, Hopkins AM, Hobert ME, Nusrat A, Madara JL (2004) RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am J Physiol Cell Physiol 287: C327-C335.
  • Cardoso FL, Brites D, Brito AM (2010) Looking at the blood-brain barrier: Molecular anatomy and possible investigation approaches. Brain Res Rev 64: 328-363.
  • Cereijido M, Valdes J, Shoshani L, Contreras RG (1998) Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol 60: 161-177.
  • Cereijido M, Contreras RG, Shoshani L (2004) Cell adhe­sion, polarity, and epithelia in the dawn of metazoans. Physical Rev 84: 1229-1262.
  • Chavakis T, Keiper T, Matz-Westphal R, Hersemeyer K, Sachs UJ, Nawroth PP, Preissner KT, Santoso S (2004) The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. J Biol Chem 279: 55602-55608.
  • Chen YH, Lu Q, Goodenough DA, Jeansonne B (2002) Nonreceptor tyrosine kinase c-Yes interacts with occludin during tight junction formation in canine kidney epithe­lial cells. Mol Biol Cell 13: 1227-1237.
  • Chen X, Gawryluk JW, Wagener JF, Ghribi O, Geiger JD (2008a) Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. J Neuroinflammation 5: 12.
  • Chen X, Lan X, Roche I, Liu R, Geiger JD (2008b) Caffeine protects against MPTP-induced blood-brain barrier dys­function in mouse striatum. J Neurochem 107: 1147­1157.
  • Choi DK, Pennathur S, Perier C, Tieu K, Teismann P, Wu DC, Jackson-Lewis V, Vila M, Vonsattel JP, Heinecke JW, Przedborski S (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice. J Neurosci 25: 6594-6600.
  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 283: C142-C147.
  • Cordenonsi M, Turco F, D'Atri F, Hammar E, Martinucci G, Meggio F, Citi S (1999) Xenopus laevis occludin. Identification of in vitro phosphorylation sites by protein kinase CK2 and association with cingulin. Eur J Biochem 264: 374-384.
  • Crawford LE, Milliken EE, Irani K, Zweier JL, Becker LC, Johnson TM, Eissa NT, Crystal RG, Finkel T, Goldschmidt- Clermont PJ (1996) Superoxide-mediated actin response in post-hypoxic endothelial cells. J Biol Chem 271: 26863-26867.
  • Cunningham SA, Rodriguez JM, Arrate MP, Tran TM, Brock TA (2002) JAM2 interacts with alpha4beta1. Facilitation by JAM3. J Biol Chem 277: 27589-27592.
  • Dauer W, Przedborski S (2003) Parkinson's disease: mecha­nisms and models. Neuron 39: 889-909.
  • Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16: 209-221.
  • Ebnet K, Schulz CU, Meyer MK, Brickwedde ZU, Pendl GG, Vestweber D (2000) Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 275: 27979-27988.
  • Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117: 19-29.
  • Farshori P, Kachar B (1999) Redistribution and phosphorylation of occludin during opening and resealing of tight junctions in cultured epithelial cells. J Membr Biol 170: 147-156.
  • Fischer S, Wiesnet M, Marti HH, Renz D, Schaper W (2004) Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived endothelial cells. J Cell Physiol 198: 359-369.
  • Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46: 470-472.
  • Fogg VC, Liu CJ, Margolis B (2005) Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. J Cell Sci 118: 2859-2869.
  • Forno LS, DeLanney LE, Irwin I, Di Monte D, Langston JW (1992) Astrocytes and Parkinson's disease. Prog Brain Res 94: 429-436.
  • Fukumoto K, Takagi N, Yamamoto R, Moriyama Y, Takeo S, Tanonaka K (2010) Prostanoid EP1 receptor antagonist reduces blood-brain barrier leakage after cerebral isch­emia. Eur J Pharmacol 640: 82-86.
  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junction. J Cell Biol 123: 1777­1788.
  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127: 1617-1626.
  • Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998a) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143: 391-401.
  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998b) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141: 1539-1550.
  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda, T, Kubo A, Tsukita S (2002) Claudinbased tight junctions are crucial for the mammalian epi­dermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156: 1099-1111.
  • Grange-Messent V, Bouchaud C, Jamme M, Lallement G, Foquin A, Carpentier P (1999) Seizure-related opening of the blood-brain barrier produced by the anticholinesterase compound, soman: new ultrastructural observations. Cell Mol Biol (Noisy-le-grand) 45: 1-14.
  • Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S (2008) The cytoplasmic plaque of tight junctions: a scaf­folding and signalling center. Biochim Biophys Acta 1778: 601-613.
  • Hamazaki H, Itoh M, Sasaki H, Furuse M, Tsukita S (2002) Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with clau- din-1 and junctional adhesion molecule. J Biol Chem 277: 455-461.
  • Harhaj NS, Felinski EA, Wolpert EB, Sundstrom JM, Gardner TW, Antonetti DA (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci 47: 5106-5115.
  • Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskel- eton. Biochim Biophys Acta 1778: 660-669.
  • Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR (1998) ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 141: 199-208.
  • Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction per­meability in endothelial cells. J Cell Sci 110: 1603-1613.
  • Hossmann KA (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26: 1057-1083.
  • Huber JD, Egleton RD, Davis TP (2001) Molecular physiol­ogy and pathophysiology of tight junctions in the blood- brain barrier. Trends Neurosci 24: 719-725.
  • Hunot S, Hirsch EC (2003) Neuroinflammatory processes in Parkinson's disease. Ann Neurol 53 (Suppl 3): S49-S58.
  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171: 939-945.
  • Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S (2008) Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell 19: 4687-4693.
  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999a) Direct binding of three tight junctionassociated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH ter­mini of claudins. J Cell Biol 147: 1351-1363.
  • Itoh M, Morita K, Tsukita S (1999b) Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem 274: 5981­5986.
  • Jin R, Song Z, Yu S, Piazza A, Nanda A, Penninger JM, Granger DN, Li G (2011) Phosphatidylinositol-3-kinase gamma plays a central role in blood-brain barrier dys­function in acute experimental stroke. Stroke 42: 2033­2044.
  • Jou TS, Schneeberger EE, Nelson WJ (1998) Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol 142: 101-115.
  • Kale G, Naren AP, Sheth P, Rao RK (2003) Tyrosine phosphorylation of occludin attenuates its interactions with ZO-1, ZO-2, and ZO-3. Biochem Biophys Res Commun 302: 324-329.
  • Kaya M, Gurses C, Kalayci R, Ekizoglu O, Ahishali B, Orhan N, Oku B, Arican N, Ustek D, Bilgic B, Elmas I, Kucuk M, Kemikler G (2008) Morphological and func­tional changes of blood-brain barrier in kindled rats with cortical dysplasia. Brain Res 1208: 181-191.
  • Khandoga A, Kessler JS, Meissner H, Hanschen M, Corada M, Motoike T, Enders G, Dejana E, Krombach F (2005) Junctional adhesion molecule-A deficiency increases hepat­ic ischemia-reperfusion injury despite reduction of neutro­phil transendothelial migration. Blood 106: 725-733.
  • Kirk J, Plumb J, Mirakhur M, McQuaid S (2003) Tight junc- tional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood- brain barrier leakage and active demyelination. J Pathol 201: 319-327.
  • Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A (1998) Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydro- pyridine (MPTP). Immunopharmacology 39: 167-180.
  • Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57: 176- 179.
  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta 1778: 631-645.
  • Kuroiwa T, Ting P, Martinez H, Klatzo I (1985) The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol (Berl) 68: 122-129.
  • Lamas M, González-Mariscal L, Gutiérrez R (2002) Presence of claudins mRNA in the brain. Selective modulation of expression by kindling epilepsy. Brain Res Mol Brain Res 104: 250-254.
  • Leech S, Kirk J, Plumb J, McQuaid S (2007) Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis. Neuropathol Appl Neurobiol 33: 86-98.
  • Li Y, Fanning AS, Anderson JM, Lavie A (2005) Structure of the conserved cytoplasmic C-terminal domain of occlu- din: identification of the ZO-1 binding surface. J Mol Biol 352: 151-164.
  • Liang TW, Chiu HH, Gurney A, Sidle A, Tumas DB, Schow P, Foster J, Klassen T, Dennis K, DeMarco RA, Pham T, Frantz G, Fong S (2002) Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM 3. J Immunol 168: 1618-1626.
  • Mandell KJ, McCall IC, Parkos CA (2004) Involvement of the junctional adhesion molecule-1 (JAM1) homodimer interface in regulation of epithelial barrier function. J Biol Chem 279: 16254-16262.
  • Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, Hallene K, Diglaw T, Franic L, Najm I, Janigro D (2007) Seizure-promoting effect of blood-brain barrier disruption. Epilepsia 48: 732-742.
  • Marco S, Skaper SD (2006) Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci Lett 401: 219­224.
  • Mark KS, Davis TP (2002) Cerebral microvascular changes in permeability and tight junctions induced by hypoxia- reoxygenation. Am J Physiol Heart Circ Physiol 282: H1485-H1494.
  • Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhe­sion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142: 117-127.
  • Matter K, Balda M (2003) Signalling to and from tight junc­tions. Mol Cell Biol 4: 225-236.
  • Meyer TN, Schwesinger C, Ye J, Denker BM, Nigam SK (2001) Reassembly of the tight junction after oxidative stress depends on tyrosine kinase activity. J Biol Chem 276: 22048-22055.
  • Meyer TN, Schwesinger C, Denker BM (2002) Zonula occludens-1 is a scaffolding protein for signaling mole­cules. Galpha(12) directly binds to the Src homology 3 domain and regulates paracellular permeability in epithe­lial cells. J Biol Chem 277: 24855-24858.
  • Michel D, Arsanto JP, Massey-Harroche D, Beclin C, Wijnholds J, Le Bivic A (2005) PATJ connects and stabi­lizes apical and lateral components of tight junctions in human intestinal cells. J Cell Sci 118: 4049-4057.
  • Minagar A, Alexander JS (2003) Blood-brain barrier disrup­tion in multiple sclerosis. Mult Scler 9: 540-549.
  • Minagar A, Ostanin D, Long AC, Jennings M, Kelley RE, Sasaki M, Alexander JS (2003) Serum from patients with multiple sclerosis downregulates occludin and VE-cadherin expression in cultured endothelial cells. Mult Scler 9: 235-238.
  • Minagar A, Jy W, Jimenez JJ, Alexander JS (2006) Multiple sclerosis as a vascular disease. Neurol Res 28: 230-235.
  • Mitic LL, Anderson JM (1998) Molecular architecture of tight junctions. Annu Rev Physiol 60: 121-142.
  • Miyamori H, Takino T, Kobayashi Y, Tokai H, Itoh Y, Seiki M, Sato H (2001) Claudin promotes activation of pro­matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases. J Biol Chem 276: 28204­28211.
  • Morgan L, Shah B, Rivers LE, Barden L, Groom AJ, Chung R, Higazi D, Desmond H, Smith T, Staddon JM (2007) Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neuroscience 147: 664-673.
  • Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, Lerner-Natoli M (2011) Epileptiform activity induces vascular remodeling and zonula occludens 1 down- regulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci 31: 10677-10688.
  • Monta K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147: 185-194.
  • Niessen C (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127: 2525­2532.
  • Nitsch C, Hubauer H (1986) Distant blood-brain barrier opening in subfields of the rat hippocampus after intrastriatal injections of kainic acid but not ibotenic acid. Neurosci Lett 64: 53-58.
  • Nitta T Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161: 653-660.
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343: 938­952.
  • Nunbhakdi-Craig V, Machleidt T, Ogris E, Bellotto D, White III CL, Sontag E (2002) Protein phosphatase 2A associ­ates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 158: 967-978.
  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 23: S8-S19.
  • Olivera D, Knall C, Boggs S, Seagrave JC (2010) Cytoskeletal modulation and tyrosine phosphorylation of tight junction proteins are associated with mainstream cigarette smoke- induced permeability of airway epithelium. Exp Toxicol Pathol 62: 133-143.
  • Ostermann G, Weber KS, Zernecke A, Schröder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3: 151-158.
  • Paris L, Tonutti L, Vannini C, Bazzoni G (2008) Structural organization of the tight junctions. Biochim Biophys Acta 1778: 646-659.
  • Petty MA, Lo EH (2002) Junctional complexes of the blood- brain barrier: permeability changes in neuroinflamma­tion. Prog Neurobiol 68: 311-323.
  • Plumb J, McQuaid S, Mirakhur M, Kirk J (2002) Abnormal endothelial tight junctions in active lesions and normal- appearing white matter in multiple sclerosis. Brain Pathol 12: 154-169.
  • Rajasekaran AK, Hojo M, Huima T, Rodriguez-Boulan E (1996) Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol 132: 451-463.
  • Rao RK, Basuroy S, Rao VU, Karnaky Jr KJ, Gupta A (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368: 471-481.
  • Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR (2010) Tight junctional-as- sociated MARVEL proteins marvelD3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 21: 1200-1213.
  • Rehder D, Iden S, Nasdala I, Wegener J, Brickwedde MK, Vestweber D, Ebnet K (2006) Junctional adhesion mole- cule-A participates in the formation of apico-basal polarity through different domains. Exp Cell Res 312: 3389-3403.
  • Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M (2007) Angiogenesis is asso­ciated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 130: 1942-1956.
  • Rite I, Machado A, Cano J, Venero JL (2007) Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 101: 1567-1582.
  • Romanitan MO, Popescu BO, Winblad B, Bajenaru OA, Bogdanovic N (2007) Occludin is overexpressed in Alzheimer's disease and vascular dementia. J Cell Mol Med 11: 569-579.
  • Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix met- alloproteinases and TIMPs are associated with blood- brain barrier opening after reperfusion in rat brain. Stroke 29: 2189-2195.
  • Rosenberg GA, Yang Y (2007) Vasogenic edma due to tight junction disruption by matrix metalloproteinases in cere­bral ischemia. Neurosurg Focus 22: E4.
  • Roses AD (1996) The Alzheimer diseases. Curr Opin Neurobiol 6: 644-650.
  • Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithe­lial cells bearing tight junctions. J Cell Biol 141: 391-401.
  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11: 4131-4142.
  • Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S (1997) Possible involvement of phosphoryla- tion of occludin in tight junction formation. J Cell Biol 137: 1393-1401.
  • Sanchez-Pulido L, Martin-Belmonte F, Valencia A, Alonso MA (2002) MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci 27: 599-601.
  • Sasaki H, Matsui C, Furuse K, Mimori-Kiyosue Y, Furuse M, Tsukita S (2003) Dynamic behavior of paired claudin strands within apposing plasma membranes. Proc Natl Acad Sci U S A 100: 3971-3976.
  • Savitt, JM, Dawson VL Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116: 1744-1754.
  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286: C1213-C1228.
  • Shen L, Weber CR, Turner JR (2008) The tight junction protein complex undergoes rapid and continuous molecu­lar remodeling at steady state. J Cell Biol 181: 683-695.
  • Sheth P, Basuroy S, Li C, Naren AP, Rao RK (2003) Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. J Biol Chem 278: 49239­49245.
  • Shin K, Straight S, Margolis B (2005) PATJ regulates tight junction formation and polarity in mammalian epithelial cells. J Cell Biol 168: 705-711.
  • Shin K, Fogg V, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22: 207-235.
  • Spring K (1998) Routes and mechanism of fluid transport by epithelia. Annu Rev Physiol 60: 105-119.
  • Steed E, Rodrigues N, Balda M, Matter K (2009) Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol 10: 95-108.
  • Steed E, Balda M, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20: 142-149.
  • Stewart PA, Hayakawa K, Akers MA, Vinters HV (1992) A morphometric study of the blood-brain barrier in Alzheimer's disease. Lab Invest 67: 734-742.
  • Stolp HB, Dziegielewska KM (2009) Review: Role of developmental inflammation and blood-brain barrier dys­function in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 35: 132-146.
  • Tang VW, Goodenough DA (2003) Paracellular ion channel at the tight junction. Biophys J 84: 1660-1673.
  • Tanzi RE (2005) The synaptic Abeta hypothesis of Alzheimer disease. Nat Neurosci 8: 977-979.
  • Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, Kumar P (2002) Increased intrathecal lev­els of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol Aging 23: 237-243.
  • Trojanowski, JQ, Shin RW, Schmidt ML, Lee VM (1995) Relationship between plaques, tangles, and dystrophic processes in Alzheimer's disease. Neurobiol Aging 16: 335-340.
  • Tsukita S, Furuse M, Itoh M (1999) Structural and signaling molecules come together at tight junctions. Curr Opin Cell Biol 11: 628-633.
  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285-293.
  • Tsukita S, Yamazaki Y, Katsuno T, Tamura A (2008) Tight junction-based epithelial microenvironment and cell pro­liferation. Oncogene 27: 6930-6938.
  • Ujiie M, Dickstein DL, Carlow DA, Jefferies WA (2003) Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10: 463-470.
  • Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand forma­tion. Cell 126: 741-754.
  • Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ (2002) Adenovirus fiber disrupts CAR- mediated intercellular adhesion allowing virus escape. Cell 110: 789-799.
  • Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood-brain barrier in brain homeostasis and neurological diseases. Biochimica et Biophysica Acta 1788: 842-857.
  • Wenk GL (2003) Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry 64 (Suppl 9): 7-10.
  • Westergaard E, Hertz MM, Bolwig TG (1978) Increased permeability to horseradish peroxidase across cerebral vessels, evoked by electrically induced seizures in the rat. Acta Neuropathol 41: 73-80.
  • Westphal JK, Dörfel MJ, Krug SM, Cording JD, Piontek J, Blasig IE, Tauber R, Fromm M, Huber O (2010) Tricellulin forms homomeric and heteromeric tight junctional com­plexes. Cell Mol Life Sci 67: 2057-2068.
  • Wittchen ES, Haskins J, Stevenson BR (1999) Protein inter­actions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem 274: 35179-35185.
  • Wong V, Gumbiner BM (1997) A synthetic peptide corre­sponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 136: 399-409.
  • Wosik K, Cayrol R, Dodelet-Devillers A, Berthelet F, Bernard M, Moumdjian R, Bouthillier A, Reudelhuber TL, Prat A (2007) Angiotensin II controls occludin func­tion and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J Neurosci 27: 9032­9042.
  • Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal isch­emia in rat. J Cereb Blood Flow Metab 27: 697-709.
  • Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16: 921-932.
  • Zhao H, Zhang Q, Xue Y, Chen X, Haun RS (2011) Effects of hyperbaric oxygen on the expression of claudins after cerebral ischemia-reperfusion in rats. Exp Brain Res 212: 109-117.
  • Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG (2007) Microvascular injury and blood-brain barrier leakage in Alzheimer's disease. Neurobiol Aging 28: 977-986.
  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57: 178-201.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e40627b7-7e21-4690-93a6-c8aa489eb7ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.