PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

The uptake, accumulation, and toxic effects of cadmium in barnyardgrass (Echinochloa crus-galli)

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cadmium (Cd) is regarded as one of the most toxic environmental pollutants. A better understanding of the growth response, uptake, and translocation of Cd in barnyard grass (Echinochloa crus-galli) would be helpful for evaluating the role of this grass species as a potential candidate to be used for phytoremediation. The studied plants were grown in treated soils with increasing doses of Cd (0, 0.3, 0.6, 0.9, and 1.5 mg·kg⁻¹). The results showed that Cd contents in plant tissues were found to increase with increasing doses of Cd. The pattern of Cd accumulation in different parts of the plant were found as: root > aboveground part > seed. Translocation factor (TF) values were found to be less than 1, and translocation from root to aboveground part was found to be higher as compared to that of aboveground part to seed. There was no significant difference on the aboveground part fresh weight (FW) and tiller number per plant under different concentrations of Cd stress. The root FW and the lengths of roots and shoots were significantly decreased in response to Cd treatments at low concentrations. However, the 1.5 mg·kg⁻¹ Cd application didn’t affect significant changes on the root and shoot length than that of the control. A high concentration of cadmium supply could promote chlorophyll content. SOD showed a similar trend to POD in Cd-exposed plants, with an increase at lower concentrations and a decrease at higher concentrations.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

P.779-784,fig.,ref.

Twórcy

autor
  • Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, the People’s Republic of China Collaborative Innovation Center for Field Weeds Control, Loudi, 417000, Hunan, the People’s Republic of China
autor
  • Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, the People’s Republic of China Collaborative Innovation Center for Field Weeds Control, Loudi, 417000, Hunan, the People’s Republic of China
autor
  • Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, the People’s Republic of China Collaborative Innovation Center for Field Weeds Control, Loudi, 417000, Hunan, the People’s Republic of China
autor
  • Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, the People’s Republic of China Collaborative Innovation Center for Field Weeds Control, Loudi, 417000, Hunan, the People’s Republic of China

Bibliografia

  • 1. GILL S.S., TUTEJA N. Cadmium stress tolerance in crop plants: Probing the role of sulfur. Plant Signal Behav, 6, 2, 215, 2011.
  • 2. PODAZZA G., ARIAS M., PRADO F.E. Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. J Hazard Mater, 215-216, 83, 2012.
  • 3. ABE T., FUKAMI M., OGASAWARA M. Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci Plant Nutr, 54, 566, 2008.
  • 4. URAGUCHI S., MORI S., KURAMATA M., KAWASAKI A., ARAO T., ISHIKAWA S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot, 60 (9), 2677, 2009.
  • 5. DAGHAN H., ARSLAN M., UYGUR V., KOLELI N., EREN A. The cadmium phytoextraction efficiency of ScMTII gene bearing transgenic tobacco plant. Biotechnol Biotec Eq, 24 (3), 1974, 2010.
  • 6. GILL S.S., HASANUZZAMAN M., NAHAR K., MACOVEI A., TUTEJA N. Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Bioch, 63, 254, 2013.
  • 7. GALAL T.M., SHEHATA H.S. Impact of nutrients and heavy metals capture by weeds on the growthand production of rice (Oryza sativa L.) irrigated with different water sources. Ecoll Indic, 54, 108, 2015.
  • 8. DAS K., MANDAL C., GHOSH N., BANERJEE S., DEY N., ADAK M.K. Effects of exogenous spermidine on cell wall composition and carbohydrate metabolism of Marsilea plants under cadmium stress. J Plant Physiol Pathol, 2, 3, 2014.
  • 9. LIU W.T., ZHOU Q.X., AN J, SUN Y.B., LIU R. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater, 173, 737, 2010.
  • 10. BURZYNSKI M., KLOBUS G. Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica, 42, 505, 2004.
  • 11. TRAN T.A., POPOVA L.P. Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot, 37, 1, 2013.
  • 12. GUPTA D.K., PENA L.B., ROMERO-PUERTAS M.C., HERNANDEZ A., INOUHE M., SANDALIO L.M. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ, DOI: 10.1111/pce.12711, 2016.
  • 13. TANG Y.T., QIU R.L., ZENG X.W., YING R.R., YU F.M., ZHOU X.Y. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot, 66, 126, 2009.
  • 14. ARDUINI I., MASONI A., MARIOTTI M., PAMPANA S., ERCOLI L. Cadmium uptake and translocation in durum wheat varieties differing in grain-Cd accumulation. Plant Soil Environ, 60, 43, 2014.
  • 15. WILSON M., NORSWORTHY J., SCOTT R., GBUR E. Program approaches to control herbicide-resistant barnyard grass (Echinochloa crus-galli) in Midsouthern United States rice. Weed Technol, 28 (1), 39, 2014.
  • 16. BAJWA A.A., JABRAN K., SHAHID M., ALI H.H., CHAUHAN B.S., EHSANULLAH. Eco-biology and management of Echinochloa crus-galli. Crop Prot, 75, 151, 2015.
  • 17. ABE T., FUKAMI M., ICHIZEN N., OGASAWARA M. Susceptibility of weed species to cadmium evaluated in a sand culture. Weed Biol Manag, 6, 107, 2006.
  • 18. SULTANA R., KOBAYASHI K., KIM K. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation. Environ Monit Assess, 187, 4101, 2015.
  • 19. LICHTENTHALER H.K., WELLBURN A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc T, 11 (5), 591, 1983.
  • 20. MISHRA S., SRIVASTAVA S., TRIPATHI R.D., GOVINDARAJAN R., KURIAKOSE S.V., PRASAD M.N.V. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Bioch, 44, 25, 2006.
  • 21. ABEDI T., PAKNIYAT H. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant, 46 (1), 27, 2010.
  • 22. CLEMENS S., PALMGREN M.G., KRAMER U. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci, 7, 309, 2002.
  • 23. ZHAO F.J., HAMONJ R.E., LOMBI E., MCLAUGHLIN M.J., MCGRATH S.P. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot, 53, 535, 2002.
  • 24. ARDUINI I., MASONI A., MARIOTTI M., PAMPANA S., ERCOLI L. Cadmium uptake and translocation in durum wheat varieties differing in grain-Cd accumulation. Plant Soil Environ, 60, 43, 2014.
  • 25. HE S.Y., HE Z.L., YANG X.E., STOFFELLA P.J., BALIGAR V.C. Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. Adv Agron, 134, 135, 2015.
  • 26. HAWRYLAK-NOWAK B., DRESLER S., MATRASZEK R. Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol Bioch, 94, 225, 2015.
  • 27. GILL S.S., KHAN N.A., TUTEJA N. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci, 182, 112, 2012.
  • 28. ULLAH H. A., JAVED F., WAHID A., SADIA B. Alleviating effect of exogenous application of ascorbic acid on growth and mineral nutrients in cadmium stressed barley (Hordeum vulgare) Seedlings. Int J Agric Biol, DOI: 10.17957/IJAB/15.0064, 2016.
  • 29. CHEN Y.X., LIN Q., LUO Y.M., HE Y.F., ZHEN S.J., YU Y.L., TIAN G.M., WONG M.H. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 50, 807, 2003.
  • 30. LOPEZ-MILLAN A.F., SAGARDOY R., SOLANAS M., ABADIA A., ABADIA J. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot, 65, 376, 2009.
  • 31. SCALET M., FEDERICE R., GUIDO M.C., MANES F. Peroxidase activity and polyamine changes in response to ozone and simulated acid rain in Aleppo pine needles. Environ Exp Bot, 35, 417, 1995.
  • 32. WU Q., SU N.N., CAI J.T., SHEN Z.G., CUI J. Hydrogenrich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. J Plant Physiol, 175, 174, 2015.
  • 33. MISHRA S., SRIVASTAVA S., TRIPATHI R.D., GOVINDARAJAN R., KURIAKOSE S.V., PRASAD M.N.V. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Bioch, 44, 25-, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e3d9b56c-3548-4a9b-a7e2-df3583bb0468
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.