PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 40 | 02 |

Tytuł artykułu

Physiological and biochemical parameters: new tools to screen barley root exudate allelopathic potential (Hordeum vulgare L. subsp. vulgare)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Morphological markers/traits are often used in the detection of allelopathic stress, but optical signals including chlorophyll a fluorescence emission could be useful in developing new screening techniques. In this context, the allelopathic effect of barley (Hordeum vulgare subsp. vulgare) root exudates (three modern varieties and three landraces) were assessed on the morphological (root and shoot length, biomass accumulation), physiological (Fv/Fm and F0), and biochemical (chlorophyll and protein contents) variables of great brome (Bromus diandrus Roth., syn. Bromus rigidus Roth. subsp. gussonii Parl.). All the measured traits were affected when great brome was grown in a soil substrate in which barley plants had previously developed for 30 days before being removed. The response of receiver plants was affected by treatment with activated charcoal, dependent on barley genotype and on the nature of the growing substrate. The inhibitory effect was lower with the addition of the activated charcoal suggesting the release of putative allelochemicals from barley roots into the soil. The barley landraces were more toxic than modern varieties and their effect was more pronounced in sandy substrate than in silty clay sand substrate. In our investigation, the chlorophyll content and Fv/Fm were the most correlated variables with barley allelopathic potential. These two parameters might be considered as effective tools to quantify susceptibility to allelochemical inhibitors in higher plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

40

Numer

02

Opis fizyczny

Article 38 [14p.], fig.,ref.

Twórcy

autor
  • Plant Biology Laboratory, Gembloux Agro-Bio Tech, University of Liege, 2 Passage de Deportes, 5030 Gembloux, Belgium
  • Genetics and Cereal Breeding Laboratory, Department of Agronomy and Plant Biotechnology, National Agronomic Institute of Tunisia, University of Carthage, 43 Charles Nicolle Street, 1082 Tunis, Tunisia
autor
  • Plant Biology Laboratory, Gembloux Agro-Bio Tech, University of Liege, 2 Passage de Deportes, 5030 Gembloux, Belgium
  • Swiss Federal Research Station Agroscope Changins Wädenswil AC, 1260 Nyon, Switzerland
  • Genetics and Cereal Breeding Laboratory, Department of Agronomy and Plant Biotechnology, National Agronomic Institute of Tunisia, University of Carthage, 43 Charles Nicolle Street, 1082 Tunis, Tunisia
  • General and Organic Chemistry Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2 Passage de Déportés, 5030 Gembloux, Belgium
autor
  • Genetics and Cereal Breeding Laboratory, Department of Agronomy and Plant Biotechnology, National Agronomic Institute of Tunisia, University of Carthage, 43 Charles Nicolle Street, 1082 Tunis, Tunisia
autor
  • Plant Biology Laboratory, Gembloux Agro-Bio Tech, University of Liege, 2 Passage de Deportes, 5030 Gembloux, Belgium

Bibliografia

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin CT, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15 a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93:13404–13409
  • Baghestani A, Lemieux C, Leroux GD, Baziramakenga R (1999) Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci 47:498–504
  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621
  • Barkosky RR, Einhellig FA, Butler JL (2000) Caffeic acid-induced changes in plant–water relationships and photosynthesis in leafy spurge (Euphorbia esula). J Chem Ecol 26:2095–2109
  • Batish DR, Kaur S, Singh HP, Kohli RK (2009) Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora 204:388–395
  • Baziramakenga R, Leroux GD, Simard RR, Nadeau P (1997) Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Can J Bot 75:445–450
  • Ben-Hammouda M, Ghorbal H, Kremer R, Oueslati O (2001) Allelopathic effects of barley extracts on germination and seedlings growth of bread and durum wheats. Agronomie 21:65–71
  • Ben-Hammouda M, Ghorbal H, Kremer RJ, Oueslati O (2002) Autotoxicity of barley. J Plant Nutr 25:1155–1161
  • Bertholdsson NO (2004) Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res 44:78–86
  • Bertholdsson NO (2005) Early vigour and allelopathy—two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res 45:94–102
  • Bouhaouel I, Gfeller A, Fauconnier ML, Slim Amara H, du Jardin P (2015) Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. Biocontrol 60:425–436
  • Bouhaouel I, Gfeller A, Fauconnier ML, Delory B, Slim Amara H, du Jardin P (2016) Evaluation of the allelopathic potential of water-soluble compounds of barley (Hordeum vulgare L. subsp. vulgare) and great brome (Bromus diandrus Roth.) using a modified bioassay. Biotechnol Agron Soc Environ 20:482–494
  • Bradford MM (1976) A rapid, sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
  • Cecchi AM, Koskinen WC, Cheng HH, Haider K (2004) Sorption–desorption of phenolic acids as affected by soil properties. Biol Fertil Soils 39:235–242
  • Cheremisinoff PN, Ellerbusch F (1978) Carbon adsorption handbook. Ann Arbor Science Publishers Inc, Ann Arbor
  • Chiapusio G, Gallet C, Dobremez JF, Pellissier F (2008) Les composés allélopathiques: des molécules phytotoxiques pour demain? In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides d’origine végétales, 2nd edn. Lavoisier, Paris, pp 51–69
  • Christensen S (1995) Weed suppression ability of spring barley varieties. Weed Res 35:241–247
  • Colton CE, Einhellig FA (1980) Allelopathic mechanisms of velvetleaf (Abutilon theophrasti Medic., Malvaceae) on soybean. Am J Bot 67:1407–1413
  • Courtois B, Olofsdotter M (1998) Incorporating the allelopathy trait in upland rice breeding programs. In: Olofsdotter M (ed) Allelopathy in rice, proceedings of the workshop on allelopathy in rice. IRRI, Manila, pp 57–67
  • Delory BM, Delaplace P, Fauconnier ML, du Jardin P (2016) Root-emitted volatile organic compounds: can they mediate belowground plant–plant interactions? Plant Soil 402:1–26
  • Denden M, Bettaieb T, Salhi A, Mathlouthi M (2005) Effet de la salinité sur la fluorescence chlorophyllienne, la teneur en proline et la production florale de trois espèces ornementales. Tropicultura 23:220–225
  • Dhima K, Vasilakoglou I, Gatsis T, Eleftherohorinos I (2010) Competitive interactions of fifty barley cultivars with Avena sterilis and Asperugo procumbens. Field Crops Res 117:90–100
  • Didon UME, Hansson ML (2003) Competition between six spring barley (Hordeum vulgare ssp. vulgare L.) cultivars and two weed flora in relation to interception of photosynthetic active radiation. Biol Agric Hortic 20:257–274
  • Ding J, Sun Y, Xiao CL, Shi K, Zhou YH, Yu JQ (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J Exp Bot 58:3765–3773
  • El Faleh M, Maamouri A, Deghais M, El Ahmed A (1985) Three new barley cultivars from Tunisia. Rachis 4:50–51
  • El Felah M (2011) L’orge en Tunisie; historique, état actuel et perspectives. Annales de l’INRAT 84:7–34
  • El Felah M, Chalbi N, El Gazzeh M (1991) Analyse de l’adaptation à l’aridité de quelques ressources génétiques locales d’orge (Hordeum vulgare L.) comparativement à des variétés améliorées. In: Aupelf-UREF (ed) L’amélioration des plantes pour l’adaptation aux milieux arides. John Libbey Eurotext, Paris, pp 197–209
  • El Gharbi MS, El Felah M (2013) Les céréales en Tunisie : plus d’un siècle de recherche variétale. Annales de l’INRAT 86:45–68
  • Elisante F, Mokiti TT, Ndakidemi PA (2013) Allelopathic effect of seed and leaf aqueous extracts of Datura stramonium on leaf chlorophyll content, shoot and root elongation of Cenchrus ciliaris and Neonotonia wightii. Am J Plant Sci 4:2332–2339
  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224
  • Faraloni C, Cutino I, Petruccelli R, Leva AR, Lazzeri S, Torzillo G (2011) Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environ Exp Bot 73:49–56
  • Farhoudi R, Lee DJ (2013) Allelopathic effects of barley extract (Hordeum vulgare) on sucrose synthase activity, lipid peroxidation and antioxidant enzymatic activities of Hordeum spontoneum and Avena ludoviciana. Proc Natl Acad Sci India B 83:447–452
  • Gallet C, Pellissier F (2002) Interactions allélopathiques en milieu forestier. Revue Forestière Française 54:557–574
  • Gómez-Aparicio L, Canham CD (2008) Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. J Ecol 96:447–458
  • Hammami Z, Sbei H, Kadri K, Jmel Z, Sahli A, Belhaj Fraj M, Naser H, Teixeira da Silva JA, Trifa Y (2016) Evaluation of performance of different barley genotypes irrigated with saline water in South Tunisian Saharan conditions. Environ Exp Biol 14:15–21
  • Hansen PK, Kristensen K, Willas J (2008) A weed suppressive index for spring barley (Hordeum vulgare) varieties. Weed Res 48:225–236
  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39
  • Hu Z, Li H, Chen S, Yang Y (2013) Chlorophyll content and photosystem II efficiency in soybean exposed to supplemental ultraviolet-B radiation. Photosynthetica 51:151–157
  • Hussain MI, Reigosa MJ (2011) Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. J Exp Bot 62:4533–4545
  • Hussain MI, González L, Chiapusio G, Reigosa MJ (2011) Benzoxazolin-2(3H)-one (BOA) induced changes in leaf water relations, photosynthesis and carbon isotope discrimination in Lactuca sativa. Plant Physiol Biochem 49:825–834
  • Inderjit C, Asakawa C (2001) Nature of interference potential of hairy vetch (Vicia villosa Roth) to radish (Raphanus sativus L.): does allelopathy play any role? Crop Prot 20:261–265
  • Jaradat AA (2013) Wheat landraces: a mini review. Emir J Food Agric 25:20–29
  • Jin MX, Li DY, Mi H (2002) Effects of high temperature on chlorophyll fluorescence induction and the kinetics of far red radiation-induced relaxation of apparent F₀ in maize leaves. Photosynthetica 40:581–586
  • Kalaji HM, Guo P (2008) Chlorophyll fluorescence: a useful tool in barley plant breeding programs. In: Sánchez A, Guttierrez SJ (eds) Photochemistry research progress. Nova Science Publishers Inc, New York, pp 439–463
  • Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V (2014) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem 81:16–25
  • Kamal J (2011) Impact of allelopathy of sunflower (Helianthus annuus L.) roots extract on physiology of wheat (Triticum aestivum L.). Afr J Biotechnol 10:14465–14477
  • Koocheki A, Lalegani B, Hosseini SA (2013) Ecological consequences of allelopathy. In: Zahid AC, Farooq M, Wahid A (eds) Allelopathy current trends and future applications. Springer, Berlin, pp 23–38
  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth Res 5:139–157
  • Kremer R, Ben-Hammouda M (2009) Allelopathic plants. 19. Barley (Hordeum vulgare L.). Allelopath J 24:225–242
  • Lau JA, Puliafico KP, Kopshever JA, Steltzer H, Jarvis EP, Schwarzländer M, Strauss SY, Hufbauer RA (2008) Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytol 178:412–423
  • Li ZH, Wang Q, Ruan Q, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952
  • Li JY, Guo XK, Zhang Q, Liu CH, Lin ZH, Yu ZM, Wu H, He HB (2015) A novel screening method for rice allelopathic potential: the inhibitory-circle method. Weed Res 55:441–448
  • Lindqvista H, Bornman JF (2002) Influence of time of lifting and storage on the potential photosynthetic efficiency in newly developed leaves of bare-root silver birch and common oak. Sci Hortic 94:171–179
  • Liu DL, Lovett JV (1993) Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J Chem Ecol 19:2231–2244
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668
  • Mersie W, Singh M (1993) Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet. J Chem Ecol 19:1293–1301
  • Mishra A, Mishra KB, Hoermiller II, Heyer AG, Nedbal L (2011) Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signal Behav 6:301–310
  • Morvillo CM, de la Fuente EB, Gil A, Martínez-Ghersa MA, González-Andújar JL (2011) Competitive and allelopathic interference between soybean crop and annual wormwood (Artemisia annua L.) under field conditions. Eur J Agron 34:211–221
  • Nilsson MC (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7
  • Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54:1931–1939
  • Oveisi M, Mashhadi HR, Baghestani MA, Alizadeh HM, Badri S (2008) Assessment of the allelopathic potential of 17 Iranian barley cultivars in different development stages and their variations over 60 years of selection. Weed Biol Manag 8:225–232
  • Qasem JR, Hill TA (1989) On difficulties with allelopathy methodology. Weed Res 29:345–347
  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, Orlando
  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450
  • Romero-Romero T, Anaya AL, Cruz-ortega R (2002) Screening for effects of phytochemical variability on cytoplasmic protein synthesis pattern of crop plants. J Chem Ecol 28:617–629
  • Semchenko M, Hutchings MJ, John EA (2007) Challenging the tragedy of the commons in root competition: confounding effect of neighbour presence and substrate volume. J Ecol 95:252–260
  • Shaukat SS, Munir N, Siddiqui IA (2003) Allelopathic responses of Conyza canadensis (L.) Cronquist: a cosmopolitan weed. Asian J Plant Sci 2:1034–1039
  • Singh G, Rai VK (1982) Responses of two differentially sensitive Cicer arietinum L. cultivars to water stress: protein content and drought resistance. Biol Plant 24:7–12
  • Singh A, Singh D, Singh NB (2009) Allelochemical stress produced by aqueous leachate of Nicotiana plumbaginifolia Viv. Plant Growth Regul 58:163–171
  • Souissi T, Belhadjsalah H, Mhafdhi M, Latiri K (2000) Non chemical control of Bromus diandrus Roth. in wheat in Tunisia. In: XI international conference on weed biology, Dijon
  • Souissi T, Belhadj Salah H, Latiri K (2001) Brome in cereal crops: infestations and management. L’Investisseur Agricole 42:29–32
  • Tharayil N, Bhowmik PC, Xing B (2006) Preferential sorption of phenolic phytotoxins to soil: implications for altering the availability of allelochemicals. J Agric Food Chem 54:3033–3040
  • Uddin MdN, Robinson RW, Caridi D (2014) Phytotoxicity induced by Phragmites australis: an assessment of phenotypic and physiological parameters involved in germination process and growth of receptor plant. J Plant Interact 9:338–353
  • Weidenhamer JD (1996) Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 88:866–875
  • Weißhuhn K, Prati D (2009) Activated carbon may have undesired side effects for testing allelopathy in invasive plants. Basic Appl Ecol 10:500–507
  • Wu H, Pratley J, Lemerle D, Haig T, An M (2001) Screening methods for the evaluation of crop allelopathic potential. Bot Rev 67:403–415
  • Wurst S, Van Beersum S (2009) The impact of soil organism composition and activated carbon on grass–legume competition. Plant Soil 314:1–9
  • Wurst S, Vender V, Rillig MC (2010) Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses? Plant Ecol 211:19–26
  • Yang CM, Lee CN, Chou CH (2002) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation. Bot Bull Acad Sin 43:299–304
  • Yang CM, Chang IF, Lin SJ, Chou CH (2004) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: II. Stimulation of consumption-orientation. Bot Bull Acad Sin 45:119–125
  • Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem Syst Ecol 31:129–139
  • Zahra J, Nazim H, Cai S, Han Y, Wu D, Zhang B, Haider SI, Zhang G (2014) The influence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance. Acta Physiol Plant 36:1261–1269
  • Zhang KM, Shen Y, Zou XQ, Fang YM, Liu Y, Ma LQ (2016) Photosynthetic electron-transfer reactions in the gamethophyte of Pteris multifidi reveal the presence of allelopathic interference from the invasive plant species Bidens pilosa. J Photochem Photobiol B Biol 158:81–88

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e344d292-7c62-410a-af6a-058450fba3a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.