PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 05 |

Tytuł artykułu

Screening and transcriptome analysis of water deficiency tolerant germplasms in peanut (Arachis hypogaea)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Drought is one of the main limiting factors for peanut yield worldwide. However, the underlying genetic and molecular mechanisms remain unclear. In this study, we identified several water deficiency tolerant peanut germplasms based on physiological properties in the seedling stage. One of the germplasms was further characterized by transcriptome sequencing of samples that had been untreated or treated with PEG 6000 at three different times. A total of 370,145 non-redundant transcripts and 141,289 unigenes were obtained, and differentially expressed transcripts were identified among samples. Based on functional annotation, transcripts involved in drought response pathways were selected for qPCR analysis. Similar patterns but different levels of gene expression were found between drought-tolerant and drought-sensitive germplasms. These findings provide useful insights into drought tolerance of peanut.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

05

Opis fizyczny

Article: 103 [9 p.], fig.,ref.

Twórcy

autor
  • Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 21014, Jiangsu, China
  • Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 21014, Jiangsu, China
autor
  • China National Rice Research Institute, No. 359, Tiyuchang road, Hangzhou 310006, China
autor
  • College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
autor
  • Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 21014, Jiangsu, China
autor
  • Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 21014, Jiangsu, China

Bibliografia

  • Chen X, Zhu W, Azam S, Li H, Zhu F, Hong Y, Liu H, Zhang E, Wu H, Yu S et al (2013) Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol J 11:115–127
  • Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S (2011) Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by highthroughput sequencing. PLoS One 6:e27530
  • Collino D, Dardanelli J, Sereno R, Racca R (2001) Physiological responses of argentine peanut varieties to water stress: light interception, radiation use efficiency and partitioning of assimilates. Field Crop Res 70:177–184
  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676
  • Devaiah KM, Bali G, Athmaram TN, Basha MS (2007) Identification of two new genes from drought tolerant peanut up-regulated in response to drought. Plant Growth Regul 52:249–258
  • Dramé KN, Clavel D, Repellin A, Passaquet C, Zuily-Fodil Y (2007) Water deficit induces variation in expression of stress-responsive genes in two peanut (Arachis hypogaea L.) cultivars with different tolerance to drought. Plant Physiol Bioch 45:236–243
  • Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA et al (2011) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:757–772
  • Govind G, Vokkaliga ThammeGowda H, Jayaker Kalaiarasi P, Iyer DR, Muthappa SK, Nese S, Makarla UK (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics 281:591–605
  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Fulllength transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652
  • Guimaraes PM, Brasileiro AC, Morgante CV, Martins AC, Pappas G, Silva OB Jr, Togawa R, Leal-Bertioli SC, Araujo AC, Moretzsohn MC et al (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genom 13:387
  • Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A (2013) Drought tolerance mechanisms for yield responses to pre-flowering drought stress of peanut genotypes with different drought tolerant levels. Field Crop Res 144:34–42
  • Li X-Y, Liu X, Yao Y, Li Y-H, Liu S, He C-Y, Li J-M, Lin Y-Y, Li L (2013) Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. Int J Mol Sci 14:12827–12842
  • Li X, Lu J, Liu S, Liu X, Lin Y, Li L (2014) Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol 14:58
  • Liu X, Hong L, Li X-Y, Yao Y, Hu B, Li L (2011) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotech Biochem 75:443–450
  • Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y, Li L (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359
  • Manjulatha M, Sreevathsa R, Kumar AM, Sudhakar C, Prasad TG, Tuteja N, Udayakumar M (2014) Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotechnol 56:111–125
  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517
  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNASeq. Nat Methods 5:621–628
  • Nakazawa Y, Sato H, Uchino M, Takano K (2006) Purification, characterization and cloning of phospholipase D from peanut seeds. Protein J 25:212–223
  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimaraes P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B et al (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651
  • Pandurangaiah M, Lokanadha Rao G, Sudhakarbabu O, Nareshkumar A, Kiranmai K, Lokesh U, Thapa G, Sudhakar C (2014) Overexpression of horsegram (Macrotyloma uniflorum Lam. Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol 56:758–769
  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ et al (2010) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132
  • Reddy SK, Liu S, Rudd JC, Xue Q, Payton P, Finlayson SA, Mahan J, Akhunova A, Holalu SV, Lu N (2014) Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. J Plant Physiol 171:1289–1298
  • Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of the AtDREB1A Gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One 9:e110507
  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302
  • Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203
  • Wan L, Wu Y, Huang J, Dai X, Lei Y, Yan L, Jiang H, Zhang J, Varshney RK, Liao B (2014) Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Funct Integr Genomics 14:467–477
  • Wu N, Matand K, Wu H, Li B, Li Y, Zhang X, He Z, Qian J, Liu X, Conley S et al (2013) De novo next-generation sequencing, assembling and annotation of Arachis hypogaea L. Spanish botanical type whole plant transcriptome. Theor Appl Genet 126:1145–1149
  • Xia H, Zhao C, Hou L, Li A, Zhao S, Bi Y, An J, Zhao Y, Wan S, Wang X (2013) Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genom 14:517
  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297
  • Yin D, Wang Y, Zhang X, Li H, Lu X, Zhang J, Zhang W, Chen S (2013) De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. PLoS One 8:e73767
  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genom 13:90
  • Zhang W, Chu Y, Ding C, Zhang B, Huang Q, Hu Z, Huang R, Tian Y, Su X (2014) Transcriptome sequencing of transgenic poplar (Populus 9 euramericana ‘Guariento’) expressing multiple resistance genes. BMC Genet 15(Suppl 1):S7
  • Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10:3
  • Zhu W, Chen X, Li H, Zhu F, Hong Y, Varshney RK, Liang X (2014) Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol Biol 85:395–409

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e2a03b48-b59a-417d-8cbc-f7621a424f13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.