PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

Effects of hydrostatic oressure on the nitrogen cycle of sediment

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We carried out a simulation experiment in a laboratory in order to study the effects of hydrostatic pressure from 0.1 MPa to 1.0 MPa on nitrogen cycles at the water-sediment interface of a freshwater reservoir. The results show that high hydrostatic pressure facilitates the release of nitrogen at the interface and ammonification, but has little influence on denitrification. And high hydrostatic pressure will also significantly increase the activity of dehydrogenases and proteases in the sediment, and has little influence on ureases and nitrate reductase activity. The pressure caused a large accumulation of such pollutants as ammoniacal nitrogen and nitrate nitrogen at the interface, seriously worsening the overlying water quality. As PLFA and PCR-DGGE analysis results show, different hydrostatic pressures will lead to remarkable differences in the microbial community’s structure and heredity. Within the range 0.1 MPa to 1.0 MPa, the microbial community structure is more diverse under high hydrostatic pressure than under normal pressure.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

p.2293-2304,fig.,ref.

Twórcy

autor
  • School of Architecture and Civil Engineering, Xi’an University of Science & Technology, Xi’an 710054, P.R. China
  • Geological Resources and Geological Engineering Postdoctoral Research Station, Xi’an University of Science & Technology, Xi’an 710054, P.R. China
autor
  • School of Environmental and Municipal Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, P.R. China
  • Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi’an 710055, P.R. China
autor
  • Geological Resources and Geological Engineering Postdoctoral Research Station, Xi’an University of Science & Technology, Xi’an 710054, P.R. China
autor
  • Geological Resources and Geological Engineering Postdoctoral Research Station, Xi’an University of Science & Technology, Xi’an 710054, P.R. China

Bibliografia

  • 1. Lewis W.M., Wurtsbaugh W. A., Paerl H.W. Rationale of control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ. Sci. Technol. 45, 10300, 2011.
  • 2. Zhenming Zhou , Tinglin Huang , Baoling Yuan , and Xiaobin Liao Remediation of itrogen- Contaminated Sediment Using Bioreactive, Thin-layer Capping with Biozeolite. SOIL AND SEDIMENT CONTAMINATION, 25 (1), 89, 2016. doi:10.1080/15320383.2016.1090947
  • 3. Gawrońska H., Brzozowska R., Grochowska J., Lossow K. Possibilities to Reduce Internal Loading to Lake Water by Artificial Aeration. Polish Journal of Environmental Studies, 12 (2), 171, 2003.
  • 4. Pan G., Dai L.C., Li L., He L.C., Li H., Bi L.,Gulati R.D. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes. Environ. Sci. Technol. 46, 5077, 2012.
  • 5. Tang X.Q., Wu M., Yang W.J., Yin W., Jin F., Ye M., Currie N., Scholz M. Ecological strategy foreutrophication control. Water Air Soil Poll. 223 (2), 723, 2012.
  • 6. BALLNTINE D.J., WALLING D.E., COLLINS A.L., LEEKS G.J.L. The phosphorus content of fluvial suspended sediment in three loweland groundwater-dominated catchments. J. Hydrol., 357, 140, 2008.
  • 7. IGLESIAS M.L., DEVESA-REY R., PEREZ-MOREIRA R., DIAZ-FIERROS F., BARRAL M.T. Phosphorus transfer across boundaries: from basin soils to river bed sediments. J. Soil Sediments, 11, 1125, 2011.
  • 8. Smal H., Ligęza S., Baran S., Wójcikowska - Kapusta A., Obroślak R. Nitrogen and Phosphorus in Bottom Sediments of Two Small Dam Reservoirs. Pol. J. Environ. Stud., 22 (5), 1479, 2013.
  • 9. Fenech C., Rock L., Nolan K., Tobin J., Morrissey A. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: a review. Water Res. 46, 2023, 2012.
  • 10. Huang T.L., Li X., Rijnaarts H., Grotenhuis T., Ma W.X., Sun X., Xu J.L.. Effects of storm runoff on the thermal regime and water quality of a deep, stratified reservoir in a temperate monsoon zone, in Northwest China. Sci. Total Environ. 485-486, 820, 2014.
  • 11. Tinglin Huang , Lin Guo , Haihan Zhang , Junfeng Su, Gang Wen , Kai Zhang Nitrogenremoval efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinkingwater reservoir. Bioresource Technology, 196, 209, 2015.
  • 12. Wang L., Tao Liang , Buqing Zhong , Kexin Li, Qian Zhang , Chaosheng Zhang Study on Nitrogen Dynamics at the Sediment–Water Interface of Dongting Lake, China. Aquat Geochem 20, 501, 2014. doi:10.1007/s10498-014-9232-0
  • 13. Lei Chen , Tianyuan Zheng , Junjie Zhang , Jie Liu and Xilai Zheng Effective control of modified palygorskite to NH+4 –N release from sediment. Environmental Technology, 35 (1), 60, 2014. doi: 10.1080/09593330.2013.808268
  • 14. Liu C.G., Jin X.C., Sun L., Sun H.W., Zhu L., Yu Y., Dai G.S., Zhuang Y.Y. Effects of nitrogen source and aeration mode on algae growth in freshwater. Environ Sci., 27, 101, 2006.
  • 15. Jianwei Zhao , Duanwei Zhu , Junnan Fan , Yumei Hua , Wenbing Zhou Seasonal Variation of Anammox and Denitrification in Sediments of Two Eutrophic Urban Lakes. Pol. J. Environ. Stud. 24 (6), 2779, 2015. DOI: 10.15244/pjoes/59237
  • 16. Wu Y.C., Xiang Y., Wang J.J., Wu Q.L. Molecular detection of novel Anammox bacterial clusters in the sediments of the shallow freshwater Lake Taihu. Geomicrobiol J 29, 852, 2012. doi: 10.1080/01490451.2011.635760.
  • 17. Hai -Han Zhang , Ting -Lin Huang , Sheng -Nan Chen Xiao Yang , Kai Lv, Raju Sekar Abundance and Diversity of Bacteria in Oxygen Minimum Drinking Water Reservoir Sediments Studied by Quantitative PCR and Pyrosequencing. Microb Ecol. 68 (4), 2014. DOI 10.1007/ s00248-014-0539-6
  • 18. Röske K., Roske I., Uhlmann D. Characterization of the bacterial population and chemistry in the bottom sediment of a laterally subdivided drinking water reservoir system. Limnologica 38, 367, 2008.
  • 19. Röske K., Sachse R., Scheerer C. Microbial diversity and composition of the sediment in the drinking water reservoir Saidenbach (Saxonia, Germany). Syst Appl Microbiol 35, 35, 2012.
  • 20. Zhang H.H., Huang T.L., Liu T.T. Sediment enzyme activities and microbial community diversity in an oligotrophic drinking water reservoir, eastern China. PloS ONE, 8 (10), e78571, 2013.
  • 21. Kranzioch I., Stoll C., Holbach A., Chen H., Wang L., Zheng B. Dechlorination and organohaliderespiring bacteria dynamics in sediment samples of the Yangtze Three Gorges Reservoir. Environ Sci Pollut Res 20, 7046, 2013.
  • 22. Liu J., Lin Z., Zhang H., Han B.P. Hydrodynamic change recorded by diatoms in sediments of Liuxihe Reservoir, southern China. J Paleolimnol 47, 17, 2012.
  • 23. Zhang H.H., Huang T.L., Chen S.N., Guo L., Yang X. Microbial community functional diversity and enzymatic activity in the sediments of drinking water reservoirs, Northwest China. Desalin Water Treat 52, 1608, 2014.
  • 24. Newton R.J., Jones S.E., Eiler A., McMahon K.D., Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14, 2011.
  • 25. Xiao Yang , Tinglin Huang and Haihan Zhang Effects of Seasonal Thermal Stratification on the Functional Diversity and Composition of the Microbial Community in a Drinking Water Reservoir. Water, 7, 5525, 2015. doi:10.3390/w7105525
  • 26. Aude Picard , Isabelle Daniel Pressure as an environmental parameter for microbial life - A review. Biophysical Chemistry 183, 30, 2013.
  • 27. Michael J.E., Reyes -De-Corcuera J.I. High pressure enhancement of enzymes: A review. Enzyme Microb. Tech. 45, 331, 2009.
  • 28. Xu K., Bin Guang M. Comparative analysis of predicted gene expression among deep-sea genomes. Gene 397, 136, 2007.
  • 29. Philippe M., Oger M. Jebbar . The many ways of coping with pressure. Res. Microbiol. 161, 799, 2010.
  • 30. Tamburini C., Goutx M., Guigue C., Garel M., Lefe'vre D. Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep-Sea Res. Pt. II 56, 1533, 2009.
  • 31. Rivalain N., Roquain J., Demazeau G. Development of high hydrostatic pressure in biosciences: Pressure effect on biological structures and potential applications in Biotechnologies. Biotechnol. Adv. 28, 659, 2010.
  • 32. Aude Picard , Denis Testemale , Jean -Louis Hazemann , Isabelle Daniel The influence of high hydrostatic pressure on bacterial dissimilatory iron reduction. Geochimica et Cosmochimica Acta 88, 120, 2012.
  • 33. Wu W.F., Wang F.P., Li J.H., Yang X.W., Xiao X., Pan Y.X.. Iron reduction and mineralization of deep-sea iron reducing bacterium Shewanella piezotolerans WP3 at elevated hydrostatic pressures. Geobiology 11, 593, 2013.
  • 34. Winter R., Jeworrek C. Effect of pressure on membranes. Soft Matter 5, 3157, 2009.
  • 35. Bei -Bei Chai , Ting -Lin Huang , Xiao -Guang Zhao and Ya-Jiao Li Phospholipids Fatty Acids of Three Drinking Water Reservoir Sedimentary Microbial Community: Structure and Function responses to Different Hydrostatic Pressure and Other Physicochemical Properties. Journal of Environmental Biology, 36, 845, 2015.
  • 36. China State Environmental Protection Agency: Standard Methods for the Examination of Water and Wastewater. 34 China State Environmental Protection Agency, Beijing, China, 2002 [In Chinese].
  • 37. Guan S.Y. Soil enzyme and its research method. Beijing: Agriculture Press. 1983.
  • 38. Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 (8), 911, 1959.
  • 39. Frostegård Åsa (A.), Bååth E., Tunlid A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25, 723, 1993.
  • 40. Frostegård Åsa (A.), Tunlid A., Bååth E. Phospholipid fatty acid composition and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59, 3605, 1993.
  • 41. Kandeler E., Tscherko D., Bruce K.D., Stemmer M., Hobbs P.J., Bardgett R.D., Amelung W. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32, 390, 2000.
  • 42. Federle T.W. Microbial distribution in soil - newtechniques. In: Megusar F, Gantar M (eds) Perspectives in microbial ecology. Slovene Soc Microbiol, Ljubljana, 493, 1986.
  • 43. Tunlid A., Hoitink HAJ, Low C., White D.C. Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers. Appl Environ Microbiol 55, 1368, 1989.
  • 44. Bardgett R.D., Saggar S. Effects of heavy metal contamination on the short- term decomposition of labelled 14C-glucose in a pasture soil. Soil Biol Biochem, 26, 727, 1994.
  • 45. Tsai Y.L., Olson B.H. Rapid method for direct extraction of DNA from soil and sediments. Applied Environmental Microbiology, 57, 1070, 1991.
  • 46. Janse I., Bok J., Zwart G. A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis. Journal of Microbiological Methods 57, 279, 2004.
  • 47. Li M.Y., Zhou G.H., Xu X.L., Li C.B., Zhu W.Y. Changes of bacterial diversity and main flora in chilled pork during storage using PCR-DGGE. Food Microbiology, 23, 607, 2006.
  • 48. Zhao D.Y., Ma T., Zeng J., Yan W.M., Jiang C.L., Feng J.W., Xu Y.N., Zhao H.Z. Phospholipid fatty acids analysis of the vertical distribution of microbial communities in eutrophic lake sediments. Int. J. Environ. Sci. Te. 8 (3), 571, 2011.
  • 49. Lepc J., Smilauer P. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, 2003
  • 50. Sapp M., Wichels A., Wiltshire K.H. Bacterial community dynamics during the winter-spring transition in the North Sea. FEMS Microbiol. Ecol. 59 (3), 622, 2007.
  • 51. Ter Braak C.J.F. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetation 69 (1), 69, 1987.
  • 52. Michael Schultz Rasmussen , Henrik Breuning -Madsen , Christian Christiansen Variations in the hydrostatic pressure may trigger estuarine full water column anoxia. Estuarine, Coastal and Shelf Science, 59, 21, 2004.
  • 53. Christian Tamburini , Madeleine Goutx , Catherine Guigue , Marc Garel , Dominique Lefe'vre Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets [J]. Deep-Sea Research II, 56, 1533, 2009.
  • 54. Bartlett D.H. Pressure effects on in vivo microbial processes. Biochimica et Biophysica Acta, 1595, 367, 2002

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e203c94b-034f-4b0a-8da9-c6865f6d337e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.