PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 4 |

Tytuł artykułu

A relationship between brainstem auditory evoked potential and vagal control of heart rate in adult women

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Numerous studies have investigated the connection between autonomic control of heart rate (HR) and auditory stimulus. Yet, the literature lacks evidence of a close association between auditory brainstem processing and HR autonomic control. We aimed to evaluate and verify the relationship between auditory brainstem response (ABR) and HR variability (HRV) in healthy women. Forty‑six healthy female subjects, between the ages of 18 and 30 years old participated in the study. They were subjected to an audiometry examination, followed by rest for 10 minutes for HR recording. Next, ABR evaluation was completed discretely in both ears, with I, III and V wave components. Linear regression revealed that the root‑mean square of differences between adjacent normal RR intervals (RMSSD) and the triangular interpolation of RR interval (TINN) exhibited a significant association with Wave I in the right ear. These variables contributed to 28.2% (R²) of Wave I. In conclusion, there was a significant interaction between the autonomic control of HR and auditory processing in the right ear, suggesting that vagal tone interacts with the cochlear nerve.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

78

Numer

4

Opis fizyczny

p.305-314,fig.,ref.

Twórcy

autor
  • Center for the Study of the Autonomic Nervous System (CESNA), Department of Speech-Language Pathology, UNESP, Marília, Brazil
  • Center for the Study of the Autonomic Nervous System (CESNA), Department of Speech-Language Pathology, UNESP, Marília, Brazil
  • Department of Physical Education, University of Marília, Marília, Brazil
  • PostGraduate Program in Human Development and Technology - UNESP, Rio Claro, Brazil
autor
  • Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, U.K.
  • Postgraduate Program in Health Sciences, ABC Medical School, Santo Andre, Brazil
  • Laboratory of Epidemiology and Data Analysis, School of Medicine of ABC - FMABC, Santo Andre, Brazil
autor
  • Center for the Study of the Autonomic Nervous System (CESNA), Department of Speech-Language Pathology, UNESP, Marília, Brazil

Bibliografia

  • Beissner F, Meissner K, Bär KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta‑analysis for central processing of autonomic function. J Neurosci 33: 10503–10511.
  • Brandão ML, Melo LL, Cardoso SH (1993) Mechanisms of defense in the inferior colliculus. Behav Brain Res 58: 49–55.
  • Camm A, Malik M, Bigger J, Breithardt G, Cerutti S, Cohen R, Coumel P, Fallen E, Kennedy H, Kleiger R (1997) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93: 1043–1065.
  • Campos C, Casali KR, Baraldi D, Conzatti A, Araújo AS, Khaper N, Llesuy S, Rigatto K, Belló‑Klein A (2014) Efficacy of a low dose of estrogen on anti‑ oxidant defenses and heart rate variability. Oxid Med Cell Longev 2014: 218749.
  • Colzato LS, Sellaro R, Beste C (2017) Darwin revisited: The vagus nerve is a causal element in controlling recognition of other’s emotions. Cortex 92: 95–102.
  • Craig AD (2005) Forebrain emotional asymmetry: a  neuroanatomical basis? Trends Cogn Sci 9: 566–571.
  • da Silva AG, Guida HL, Antônio AM, Marcomini RS, Fontes AM, Carlos de Abreu L, Roque AL, Silva SB, Raimundo RD, Ferreira C, Valenti VE (2014) An exploration of heart rate response to differing music rhythm and tempos. Complement Ther Clin Pract 20: 130–134.
  • Durrant JD, Ferraro JA (1991) Analog model of human click‑elicited SP and effects of high‑pass filtering. Ear Hear 12: 144–148.
  • Fernandes LCBC, Gil D, Maria SLS, Azevedo MF (2013) Auditory brainstem evoked potential of bone in individuals with sensorineural hearing loss. Rev CEFAC 15: 538–545.
  • Ferreira MI, Frost FS, Leão TF (2008) Evaluation of the duration pattern in the hearing aid test (in Portuguese). Arq Int Otorrinolaringol 12: 82–88.
  • Fujino K, Oertel D (2001) Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. J Neurosci 21: 7372–7383.
  • Geva R, Dital A, Ramon D, Yarmolovsky J, Gidron M, Kuint J (2017) Brain‑ stem as a  developmental gateway to social attention. J Child Psychol Psychiatry 58: 1351–1359.
  • Guinan JJ Jr, Warr WB, Norris BE (1983) Differential olivocochlear projec‑ tions from lateral versus medial zones of the superior olivary complex. J Comp Neurol 221: 358–370.
  • He S, Wang YX, Petralia RS, Brenowitz SD (2014) Cholinergic modulation of large‑conductance calcium‑activated potassium channels regulates syn‑ aptic strength and spine calcium in cartwheel cells of the dorsal cochlear nucleus. J Neurosci 34: 5261–5272.
  • Hermann GE, Rogers RC (2009) TNF activates astrocytes and catecholami‑ nergic neurons in the solitary nucleus: implications for autonomic con‑ trol. Brain Res 1273: 72–82.
  • Howland RH (2014) Vagus nerve stimulation. Curr Behav Neurosci Rep 1: 64–73.
  • Jerger J (1970) Clinical experience with impedance audiometry. Arch Oto‑ laryng 92: 311–324.
  • Jin Y, Kong J (2017) Transcutaneous vagus nerve stimulation: a promising method for treatment of autism spectrum disorders. Front Neurosci 10: 609.
  • Lloyd LL, Kaplan H (1978) Audiometric interpretation: a manual of basic audiometry. University Park Press, Baltimore, p. 16–17.
  • Marcomini RS, Frizzo ACF, de Góes VB, Regaçone SF, Garner DM, Raimundo  RD, Oliveira FR, Valenti VE (2018) Association between heart rhythm and cortical sound processing. J Integr Neurosci 17: 425–438.
  • Meas SJ, Zhang CL, Dabdoub A (2018) Reprogramming glia into neurons in the peripheral auditory system as a solution for sensorineural hear‑ ing loss: lessons from the central nervous system. Front Mol Neurosci 11: 77.
  • Merchan MA, Juiz JM, Godfrey DA, Mugnaini E, Smith PH, Joris PX, Banks MI, Yin TCT (1993) Responses of cochlear nucleus cells and projections of their axons. in the mammalian cochlear nuclei: organization and func‑ tion, eds Merchan MA, Juiz JM, Godfrey DA, Mugnaini E (Plenum, New York), pp 349–360.
  • Nakamura T, Tanida M, Niijima A, Hibino H, Shen J, Nagai K (2007) Auditory stimulation affects renal sympathetic nerve activity and blood pressure in rats. Neurosci Lett 416: 107–112.
  • Nakamura T, Tanida M, Niijima A, Nagai K (2009) Effect of auditory stimu‑ lation on parasympathetic nerve activity in urethane‑anesthetized rats. In Vivo 23: 415–419.
  • O’Hare JD, Zsombok A (2016) Brain‑liver connections: role of the preauto‑ nomic PVN neurons. Am J Physiol Endocrinol Metab 310: E183–E189.
  • Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC (1992) Cardiovascular effects of human insular cortex stimulation. Neurology 42: 1727–1732.
  • Paulraj MP, Subramaniam K, Yaccob SB, Adom AH, Hema CR (2015) Audito‑ ry evoked potential response and hearing loss: a review. Open Biomed Eng J 9: 17–24.
  • Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6: 661–672.
  • Poliwczak AR, Tylińska M, Broncel M (2013) Effect of short‑term testoster‑ one replacement therapy on heart rate variability in men with hypoan‑ drogen‑metabolic syndrome. Pol Arch Med Wewn 123: 467–473.
  • Porges SW (1995) Orienting in a  defensive world: mammalian modifica‑ tions of our evolutionary heritage. A Polyvagal Theory. Psychophysiol‑ ogy 32: 301–318.
  • Porges SW (2009) The polyvagal theory: new insights into adaptive reac‑ tions of the autonomic nervous system. Cleve Clin J Med 76: S86–90.
  • Porges SW (2011) The Polyvagal Theory: Neurophysiological Foundations of Emotions, Attachment, Communication, and Self‑regulation (Norton Series on Interpersonal Neurobiology). New York, NY: W. W. Norton & Company
  • Pyatigorskaya N, Mongin  M, Valabregue R, Yahia‑Cherif  L, Ewenczyk C, Poupon C, Debellemaniere E, Vidailhet M, Arnulf I, Lehéricy S (2016) Me‑ dulla oblongata damage and cardiac autonomic dysfunction in Parkin‑ son disease. Neurology 87: 2540–2545.
  • Ramírez E, Ortega AR, Reyes Del Paso GA (2015) Anxiety, attention, and decision making: The moderating role of heart rate variability. Int J Psy‑ chophysiol 98: 490–496.
  • Regaçone S, Valenti VE, Figueiredo Frizzo AC (2018) Effect of the use of different acoustic stimuli on cortical auditory evoked potentials and au‑ tonomic cardiac modulation. Biomed Res Int 2018: 5171304.
  • Roque AL, Valenti VE, Guida HL, Campos MF, Knap A, Vanderlei LC, Ferreira LL, Ferreira C, de Abreu LC (2013) The effects of auditory stim‑ ulation with music on heart rate variability in healthy women. Clinics 68: 960–967.
  • Schulz S, Bolz M, Bär K, Voss A (2016) Central‑ and autonomic nervous sys‑ tem coupling in schizophrenia. Philos Trans A Math Phys Eng Sci 374: 20150178.
  • Soares IA, Menezes PL, Carnaúba ATL, Pereira LD (2010) Standardization of brainstem auditory evoked potential using new equipment. Pró‑Fono 22: 421–426.
  • SSushil MI, Muneshwar JN, Afroz S (2016) To study brain stem auditory evoked potential in patients with type 2 diabetes mellitus: a cross-sec‑ tional comparative study. J Clin Diagn Res 10: CC01-CC04.
  • Tarvainen MP, Niskanen JP, Lipponen J, Karjalainen PO (2014) Kubios HRV– heart rate variability analysis software. Comp Meth Programs Biomed 113: 210–220.
  • Thayer JF, Brosschot JF (2005) Psychosomatics and psychopathology: looking up and down from the brain. Psychoneuroendocrinology 30: 1050–1058.
  • Thayer JF, Lane RD (2009) Claude Bernard and the heart‑brain connection: further elaboration of a  model of neurovisceral integration. Neurosci Biobehav Rev 33: 81–88.
  • Thayer JF, Ahs F, Fredrikson M, Sollers JJ 3rd, Wager TD (2012) A meta‑anal‑ ysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobe‑ hav Rev 36: 747–756.
  • Valenti VE, Abreu LC, Sato MA, Ferreira C (2010) ATZ (3‑amino‑1,2,4‑triazole) injected into the fourth cerebral ventricle influences the Bezold‑Jarisch reflex in conscious rats. Clinics 65: 1339–1343.
  • Valenti VE, Guida HL, Frizzo AC, Cardoso AC, Vanderlei LC, Abreu LC (2012) Au‑ ditory stimulation and cardiac autonomic regulation. Clinics 67: 955–958.
  • Wittling W (1997) Brain asymmetry and autonomic control of the heart. Eur Psychol 2: 313–327.
  • Wood KN, Badrov MB, Speechley MR, Shoemaker JK (2017) Regional cere‑ bral cortical thickness correlates with autonomic outflow. Auton Neu‑ rosci 207: 28–36.
  • Yakunina N, Kim SS, Nam EC (2017) Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20: 290–300.
  • Yoon BW, Morillo CA, Cechetto DF, Hachinski V (1997) Cerebral hemispher‑ ic lateralization in cardiac autonomic control. Arch Neurol 54: 741–744.
  • Zucker IH, Xiao L, Haack KK (2014) The central renin‑angiotensin system and sympathetic nerve activity in chronic heart failure. Clin Sci 126: 695–706.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e1abb52e-4ade-4ef0-ab36-0fee37521cb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.