Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 3 |
Tytuł artykułu

Rapid urban growth in the Qazvin region and its environmental hazards: implementing an agent-based model

Warianty tytułu
Języki publikacji
Urban growth is a prevalent challenge in many countries as it causes unexpected changes in land-uses of surrounding areas of cities and endangers the environment and natural resources. Thus, spatial planners and environmental managers always look for the models that simulate the expansion of urban land-use, and enable them to prevent unbalanced expansion of cities, and guide the developments to the desired areas. Several methods have been devised to simulate the dynamics of land-use development. However, the complexity of urban growth is recognized as a major barrier for such simulation methods. Agent-based models as a dynamic bottom-up approach use the real actors of land-use development as their basic components. Thus, such models have found popularity in simulating land-use development and urban sprawl modeling. This paper introduces a new agent-based model used for simulating urban land-use development in our study area located in Qazvin province, Iran. The orchards that encompass the western, eastern, and southern sides of Qazvin city are the most sensitive zones in the study area. The model uses 2005 data for the purpose of calibration and 2010 data for the goal of evaluation. A Kappa accuracy of 82.78% was finally achieved for the predication of the observed developments. Also, three zones of residential developments around Qazvin city were found to be endangered. Orchards located on the eastern side of Qazvin city are exposed to destruction and conversion into urban areas. The calibrated model can also be used as a useful tool for predicting future land-use developments and for recognizing endangered environmental zones.
Opis fizyczny
  • Faculty of Geodesy and Geomatics Engineering, K.N.Toosi University of Technology, ValiAsr Street., Mirdamad Cross, 19967-15433, Tehran, Iran
  • Faculty of Geodesy and Geomatics Engineering, K.N.Toosi University of Technology, ValiAsr Street., Mirdamad Cross, 19967-15433, Tehran, Iran
  • School of Urban Planning, University of Tehran, Enghelab Avenue, 14155-6135,Tehran, Iran
  • 1. BROCKERHOFF M. An urbanizing world, Population Bulletin, 55, (3), 3, 2000.
  • 2. BANKS J., CARSON J., NELSON B. L., NICOL D. Discrete-Event System Simulation, Prentice-Hall, 2004.
  • 3. COHEN B. Urban Growth in Developing Countries: A Review of Current Trends and a Caution Regarding Existing Forecasts, World Dev., 32, (1), 23, 2004.
  • 4. UNITED NATIONS, World urbanization prospects: The 2001 revision, New York, United Nations, 2002.
  • 5. BATTY M., XIE Y.,SUN Z. Modeling urban dynamics through GIS-based cellular automata. Comput. Environ. Urban, 23, (3), 205, 1999.
  • 6. RAFIEE R., SALMAN MAHINY A., KHORASANI N., DARVISHSEFAT A. A., DANEKAR A. Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM), Cities, 26, (1), 19, 2009.
  • 7. STATISTICAL CENTRE OF IRAN, Retrieved March, 2012, from:
  • 9. BATTY M. Agents, cells, and cities: new representational models for simulating multiscale urban dynamics. Environ. Plann. A, 37, (8), 1373, 2005.
  • 10. RINDFUSS R. R., WALSH S. J., TURNER B. L., FOX J., MISHRA V. Developing a science of land change: Challenges and methodological issues. P. Natl. Acad. Sci. USA., 101, (39), 13976, 2004.
  • 11. VALBUENA D., VERBURG P. H., BREGT A. K. A method to define a typology for agent-based analysis in regional land-use research. Agr. Ecosyst. Environ., 128, (1-2), 27, 2008.
  • 12. LE Q. B., PARK S. J., VLEK P. L. G., CREMERS A. B. Land-Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human-landscape system. I. Structure and theoretical specification. Ecological Informatics, 3, (2), 135, 2008.
  • 13. CASTELLA J.-C., VERBURG P. H. Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecol. Model., 202, (3-4), 410, 2007.
  • 14. BARDOHL R., EHRIG H. Preface: UNIGRA'03 – Uniform Approaches to Graphical Process Specification Techniques, Electronic Notes in Theoretical Computer Science, 82, (7), 166, 2003.
  • 15. EPSTEIN J. M., AXTELL R. Growing artificial societies: social science from the bottom up, The MIT Press: Cambridge, Massachusetts & London, 1996.
  • 16. CONTE R., HEGSELMANN R.,TERNA P. Simulating social phenomena, Springer: Berlin, Germany, 1997.
  • 17. WEISS G. Multiagent systems: a modern approach to distributed artificial intelligence, MIT Press, 1999.
  • 18. PARKER D. C., MANSON S. M., JANSSEN M. A., HOFFMANN M. J., DEADMAN P. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Ann. Assoc. Am. Geogr., 93, (2), 314, 2003.
  • 19. ROBINSON D. T., BROWN D. G., PARKER D. C., SCHREINEMACHERS P., JANSSEN M. A., HUIGEN M., WITTMER H., GOTTS N., PROMBUROM P., IRWIN E., BERGER T., GATZWEILER F.,BARNAUD C. Comparison of empirical methods for building agent-based models in land use science, Journal of Land Use Science, 2, (1), 31, 2007.
  • 20. WOOLDRIDGE M. An Introduction to MultiAgent Systems, John Wiley & Sons, 2009.
  • 21. HU Z., LO C. P. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urban, 31, (6), 667, 2007.
  • 22. PIJANOWSKI B. C., TAYYEBI A., DELAVAR M. R., YAZDANPANAH M. J. Urban Expansion Simulation Using Geospatial Information System and Artificial Neural Networks. International Journal of Environmental Research, 3, (4), 493, 2009.
  • 23. CASTELLA J.-C., BOISSAU S., TRUNG T. N., QUANG D. D. Agrarian transition and lowland-upland interactions in mountain areas in northern Vietnam: application of a multiagent simulation model. Agr. Syst., 86, (3), 312, 2005.
  • 24. BROWN D. G., ROBINSON D. T., AN L., NASSAUER J. I., ZELLNER M., RAND W., RIOLO R., PAGE S. E., LOW B., WANG Z. Exurbia from the bottom-up: Confronting empirical challenges to characterizing a complex system. Geoforum, 39, (2), 805, 2008.
  • 25. FILATOVA T., PARKER D. C.,VAN DER VEEN A. Agent-Based Urban Land Markets: Agent's Pricing Behavior, Land Prices and Urban Land Use Change. Journal of Artificial Societies and Social Simulation, 12, (13), 615, 2009.
  • 26. LONGLEY P. Geographic information systems and science, Wiley, 2005.
  • 27. ATIK M., ALTAN T., ARTAR M. Land Use Changes in Relation to Coastal Tourism Developments in Turkish Mediterranean. Pol. J. Environ. Stud., 19, (1), 21, 2010.
  • 28. SABET SARVESTANI M., IBRAHIM A. L., KANAROGLOU P. Three decades of urban growth in the city of Shiraz, Iran: A remote sensing and geographic information systems application. Cities, 28, (4), 320, 2011.
  • 29. MATTHEWS R., GILBERT N., ROACH A., POLHILL J., GOTTS N. Agent-based land-use models: a review of applications. Landscape Ecol., 22, (10), 1447, 2007.
  • 30. SCHWARZ N., KAHLENBERG D., HAASE D., SEPPELT R. ABMland – a Tool for Agent-Based Model Development on Urban Land Use Change. Journal of Artificial Societies and Social Simulation, 15, (2), 2012.
  • 31. BENENSON I., TORRENS P. M. Geosimulation: automata-based modeling of urban phenomena. John Wiley & Sons, 2004.
  • 32. WADDELL P. Modeling Urban Development for Land Use, Transportation, and Environmental Planning. J. Am. Plann. Assoc., 68, (3), 297, 2002.
  • 33. LOIBL W., TOETZER T. Modeling growth and densification processes in suburban regions – simulation of landscape transition with spatial agents. Environ. Modell. Softw., 18, (6), 553, 2003.
  • 34. PIJANOWSKI B. C., PITHADIA S., SHELLITO B. A., ALEXANDRIDIS K. Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int. J. Geogr. Inf. Sci., 19, (2), 197, 2005.
  • 35. TIAN G., OUYANG Y., QUAN Q., WU J. Simulating spatiotemporal dynamics of urbanization with multi-agent systems – A case study of the Phoenix metropolitan region, USA. Ecol. Model., 222, (5), 1129, 2011.
  • 36. POCEWICZ A., NIELSEN-PINCUS M., GOLDBERG C., JOHNSON M., MORGAN P., FORCE J., WAITS L., VIERLING L. Predicting land use change: comparison of models based on landowner surveys and historical land cover trends. Landscape Ecol., 23, (2), 195, 2008.
  • 37. CHEN Y., LI K. W., LIU S.-F. An OWA-TOPSIS method for multiple criteria decision analysis, Expert Syst. Appl., 38, (5), 5205, 2011.
  • 38. CHEN L. Agent-based modeling in urban and architectural research: A brief literature review. Frontiers of Architectural Research, 1, (2), 2012.
  • 39. ZHANG H., ZENG Y., BIAN L., YU X. Modelling urban expansion using a multi agent-based model in the city of Changsha. Journal of Geographical Sciences, 20, (4), 2010.
  • 40. JOKAR ARSANJANI J., HELBICH M., DE NORONHA VAZ E. Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case of Tehran, Cities, 32, (0), 2013.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.