PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Spatial variability of reinforcement provided by juvenile root systems of black locust and black poplar

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our work aimed to determine the spatial distribution of the root cohesion of the roots of 8-year-old black locust and black poplar trees. The scope of our research and analyses included determining characteristics of root systems of the studied tree species by profiling the walls of a trench with a width and a depth of 1.0 m at a distance of 0.5 and 1.0 m from the trunks. Laboratory tests comprised determining the tensile strength of the selected root classes. A modified Schwarz model (RDM) was used to describe the horizontal distribution of roots in the soil. The increase in shear strength of the root-reinforced soil was determined by a strain bundle model in which the value of the force mobilized by the roots is described by the Weibull survival function (RBMw). The results of the root system measurements have shown that the black locust is characterized by a greater number of roots, while the roots of black poplar are thicker, which makes the relative surface of its roots larger. Calculations of root cohesion using the modified bundle model, taking into account the root system displacement, showed that the maximum value for the black locust was 9.4 and 6.4 kPa, and for the black poplar 6.4 and 6.2 kPa respectively at a distance of 0.5 and 1.0 m from the trunk. It was also shown that the optimal spacing of the trees of these species, necessary to achieve effective reinforcement of the soil, was approximately 4 m.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.4027-4037,fig.,ref.

Twórcy

autor
  • Department of Hydraulic Engineering and Geotechnics, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Krakow, Poland
autor
  • Department of Hydraulic Engineering and Geotechnics, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Krakow, Poland
autor
  • Faculty of Environmental Engineering and Land Surveying, Graduate of the University of Agriculture in Krakow, Krakow, Poland

Bibliografia

  • 1. RAHARDJO H., SATYANAGA A., LEONG E.C., SANTOSO V.A., NG Y.S. Performance of an intrumented slope covered with shrubs and deep-rooted grass. Soils and Foundations, 54 (3), 417, 2014.
  • 2. WANG X., ZHANG W., WANG Z., LIU X., WANG S. Soil Moisture Status under Deep-Rooted and Shallow-Rooted Vegetation in the Semiarid Area of Loess Plateau in China. Pol. J. Environ. Stud., 23 (2), 511, 2014.
  • 3. GARG A., COO J.L., NG C.W.W. Field study on influence of root characteristics on soil suction distribution in slopes vegetated with Cynodon dactylon and Schefflera heptaphylla. Earth Surface Processes and Landforms, 40, 1631, 2015.
  • 4. GENET M., STOKES A., FOUCAUD T., NORRIS J.E. The influence of plant diversity on slope stability in a moist evergreen deciduous forest. Ecological Engineering, 36, 265, 2010.
  • 5. SCHMIDT K.M., ROERING J.J., STOCK J.D., DIETRICH W.E., MONTGOMERY D.R., SCHAUB T. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Canadian Geotechnical Journal, 38, 995, 2001.
  • 6. ROERING J.J., SCHMIDT K.M., STOCK J.D., DIETRICH W.E., MONTGOMERY D.R. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Canadian Geotechnical Journal, 40, 237, 2003.
  • 7. SCHWARZ M., LEHMAN P., OR D. Quantifying lateral root reinforcement in steep slopes – from a bundle of roots to tree stands. Earth Surface Processes and Landforms, 35, 354, 2010.
  • 8. SCHWARZ M. COHEN D., OR D. Spatial characterization of root reinforcement at stand scale: Theory and case study. Geomorphology, 171–172, 190, 2012.
  • 9. SCHWARZ M., THORMANN J-J., ZÜRCHER K., FELLER K. Quantifying root reinforcement in protection forests: implications for slope stability and forest management. 12th Congress INTERPRAEVENT 2012 – Grenoble/France, 791, 2012.
  • 10. WU T.H. Investigation on landslides on Prince of Wales Island, Alaska. Geotech engineering report. No 5, Dpt. of Civil Eng., Ohio State Univ., Columbus, USA, 1976.
  • 11. WALDRON L.J. The shear stress resistance of root-permeated homogeneous and stratified soil. Soil Sci. Soc. Am. Pro., 41, 843, 1977.
  • 12. SAKALS M.E., SIDLE R.C. A spatial and temporal model of root cohesion in forest soils. Can. J. For. Res. 34, 950, 2004.
  • 13. GIADROSSICH F., COHEN D., SCHWARZ M., SEDDAIU G., CONTRAN N., LUBINO M., VALDES-RODRIGUEZ O.A., NIEDDA M. Modeling bio-engineering traits of Jatropha curcas L. Ecological Engineering, 89, 40, 2016.
  • 14. SCHWARZ M., GIADROSSICH F., COHEN D. Modeling root reinforcement using a root-failureWeibull survival function. Hydrol. Earth Syst. Sci., 17, 4367, 2013.
  • 15. KODA E., PACHUTA K., OSINSKI P. Potential of Plant Applications in the Initial Stage of the Landfill Reclamation Process. Pol. J. Environ. Stud., 22 (6), 1731, 2013.
  • 16. GENET M., KOKUTSE N., STOKES A., FOURCAUD T., CAI X., JI J., MICKOVSKI S. Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. Forest Ecology and Management, 256, 1517, 2008.
  • 17. BISCHETTI G.B., CHIARADIA E.A., D’AGOSTINO V., SIMONATO T. Quantifying the effect of brush layering on slope stability. Ecological Engineering, 36, 258, 2010.
  • 18. ZYDROŃ T., BIENIAS B., GRUCHOT A. Wpływ systemu korzeniowego topoli czarnej i robinii akacjowej na wytrzymałość na ścinanie gruntów. (Influence of the root system of black poplar and black locust on the shear strength of soils.) Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 18, 772, 2016.
  • 19. PN-EN ISO 17892-4:2009. Geotechnical investigation and testing - Laboratory testing of soil – Part 4: Determination of particle size distribution. PKN.
  • 20. PN-EN ISO 14688-2:2009. Geotechnical investigation and testing – Identification and classification of soil – Part 2: Principles for a classification. PKN.
  • 21. OSTROWSKA A., GAWLIŃSKI S., SZCZUBIAŁKA Z. Methods of analysis and assessment of soil properties and plant, first ed., Institute of Environmental Protection, 333, 1991 [In Polish].
  • 22. BARAN A., CZECH T., WIECZOREK J. Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology, 2 (7), 1234, 2014.
  • 23. VERGANI C., SCHWARZ M., SOLDATI M., CORDA A., GIADROSSICH F., CHIARADIA E.A., MORANDO P., BASSANELLI C.. Root reinforcement dynamics in subalpine spruce forests following timber harvest: a case study in Canton Schwyz, Switzerland. Catena, 143, 275, 2016.
  • 24. BISCHETTI G.B., CHIARADIA E.A., EPIS T., MORLOTTI E. Root cohesion of forest species in the Italian Alps. Plant and Soil, 324, 71, 2009.
  • 25. COPPIN N.J., RICHARDS I.G. Use of vegetation in civil engineering. Butterworth, London, 1990.
  • 26. CISLAGHI A., BORDONI M., MEISINA C., BISCHETTI G.B. Soil reinforcement provided by the root system of grapevines: Quantification and spatial variability. Ecol. Eng. 109 (B), 169, 2017.
  • 27. STOKES A., ATGER C., BENGOUGH A.G., FOURCAUD T., SIDLE R.C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324 (1-2), 1, 2009.
  • 28. TOMANEK J. Botanika leśna. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa. (Forest botany. National Agricultural and Forest Publishing, Warsaw.), 1997.
  • 29. VERGANI C., SCHWARZ M., COHEN D., THORMANN J.J., BISCHETII G.B. Effects of root tensile force and diameter distribution variability on root reinforcement in the Swiss and Italian Alps. Can. J. For. Res. 44, 1426, 2014.
  • 30. KALLIOKOSKI T., NYGREN P., SIEVÄNEN R.. Coarse root architecture of boreal tree species growing in mixed stands. Silva Fennica, 42 (2), 189, 2008.
  • 31. DAY S.D., WISEMAN P.E., DICKINSON S.B., HARRIS J.R. Contemporary concepts of root system architecture of urban trees. Arboriculture&Urban Forestry, 36 (4), 149, 2010.
  • 32. SCHWARZ M., PHILIPS C., MARDEN M., McIVOR I.R., DOUGLAS G.B., WATSON A. Modelling of root reinforcement and erosion control by ‘Veronese’ poplar on pastoral hill country in New Zealand. New Zealand Journal of Forestry Science, 46, 4, 2016.
  • 33. BURYLO M., HUDEK C., REY F. Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). Catena, 84, 70, 2011.
  • 34. JI J., KOKUTSE N., GENET M., FOURCAUD T., ZHANG Z. Effect of spatial variation of tree root characteristics on slope stability. A case study on Black Locust (Robinia pseudoacacia) and Arborvitae (Platycladus orientalis) stands on the Loess Plateau, China. Catena, 92, 139, 2012.
  • 35. BOLDRIN D., LEUNG A.K., BENGOUGH A.G. Root biomechanical properties during establishment of woody perennials. Ecological Engineering, 109 (B), 196, 2017.
  • 36. COMMANDEUR P.R., PYLES M.R. Modulus of elasticity and tensile strength of Dougla-fir roots. Can. J. For. Res, 21, 48, 1991.
  • 37. SIMON A., COLLISON A.J.C. Quantifying the mechanical and hydrologic effects of riparian vegetatian on streambank stability. Earth Surface Proccesses and Landforms, 27, 527, 2002.
  • 38. BUCHANAN P., SAVIGNY K.W. Factors controlling debris avalanche initiation. Canadian Geotechnical Journal, 27, 659, 1990.
  • 39. BURROUGHS E.R., THOMAS B.R. Declining root strength in Douglas-fir after felling as a factor in slope stability. USDA For. Serv. Res. Pap. INT-1 90, 27 p. Intermt. For. and Range Exp. Stn., Ogden, Utah, 1977.
  • 40. LI Q., LIU G., ZHANG Z., TUO D., MIAO X. Structural Stability and Erodibility of Soil in an Age Sequence of Artificial Robinia pseudoacacia on a Hilly Loess Plateau. Pol. J. Environ. Stud., 25 (4), 1595, 2016.
  • 41. STOKES A., NORRIS J.E., VAN BEEK L.P.H., BOGAARD T., CAMMERAAT E,, MICKOVSKI S.B., JENNER A., DI IORIO A., FOURCAUD T. How vegetation reinforces soil on slopes. [W:] Norris J.E., Stokes A., Mickovski S.B., Cammeraat E., van Beek R., Nicoll B.C., Achim A. (red.). Slope Stability and Erosion Control: Ecotechnological Solutions. Springer, 65-118, 2008.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e17839b5-d6b2-4209-96f1-dd456479bc6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.