PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 08 |

Tytuł artykułu

PEG and drought cause distinct changes in biochemical, physiological and morphological parameters of apple seedlings

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of our work was to examine the suitability of chemically induced osmotic stress by polyethylene glycol (PEG) for drought stress experiments based on key physiological parameters of apple (Malus domestica Borkh.) leaves. In this context, we hypothesized that PEG-induced osmotic stress influences the plant physiology in a similar manner as physical water deficit. Both PEG and water shortage induced changes in relative water content (RWC), proline and chlorophyll contents, thickness of leaf cross sections, net photosynthesis rate, and chlorophyll fluorescence. However, there was no clear relationship between the values recorded from PEG and drought treatments. In summary, we confirm that PEG might be used to induce drought-like physiological changes, but it cannot be considered as an unconditional equivalent for natural drought, particularly in long-term studies.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

08

Opis fizyczny

fig.,ref.

Twórcy

autor
  • Institute of Crop Science and Resource Conservation-Horticultural Science, University of Bonn, Auf dem Huegel 6, 53121, Bonn, Germany
autor
  • Institute of Crop Science and Resource Conservation-Horticultural Science, University of Bonn, Auf dem Huegel 6, 53121, Bonn, Germany
autor
  • Institute of Crop Science and Resource Conservation-Horticultural Science, University of Bonn, Auf dem Huegel 6, 53121, Bonn, Germany

Bibliografia

  • Abrams MD, Kubiske ME, Steiner KC (1990) Drought adaptations and responses in five genotypes of Fraxinus pennsylvanica Marsh.: photosynthesis, water relations and leaf morphology. Tree Physiol 6:305–315
  • Alonso R, Elvira S, Castillo FJ, Gimeno BS (2001) Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinis halpensis. Plant Cell Environ 24:905–916
  • Bandurska H (2000) Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injuries? I. Free proline accumulation and membrane injury index in drought and osmotically stressed plants. Acta Physiol Plant 22:409–415
  • Bandurska H (2001) Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injuries? II. Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress. Acta Physiol Plant 23:483–490
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207
  • Bürling K, Hunsche M, Noga G, Pfeifer L, Damerow L (2011) Uvinduced fluorescence spectra and lifetime determination for detection of leaf rust (Puccinia triticina) in susceptible and resistant wheat (Triticum aestivum) cultivars. Funct Plant Biol 38:337–345
  • Cerovic ZG, Moise N, Agati G, Latouche N, Ben Ghozlen N, Meyer S (2008) New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence. J Food Compos Anal 21:650–654
  • Chartzoulakis K, Patakas A, Kofidis G, Bosabalidis A, Nastou A (2002) Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hortic-Amsterdam 95:39–50
  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264
  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot Lond 103:551–560
  • Comeau A, Nodichao L, Collin J, Baum M, Samsatly J, Hamidou D, Langevin F, Laroche A, Picard E (2010) New approaches for the study of osmotic stress induced by polyethylene glycol (PEG) in cereal species. Cereal Res Commun 38:471–481
  • Fan S, Blake TJ (1997) Comparison of polyethylene glycol 3350 induced osmotic stress and soil drying for drought simulation in three woody species. Trees-Struct Funct 11:342–348
  • Holbrook NM, Taiz L, Zeiger E (2007) Water and plant cells. In: Taiz L, Zeiger E (eds) Plant physiology, 4th edn. Sinauer Associates Inc, Sunderland, p 44
  • Kautz B, Noga G, Hunsche M (2014a) Controlled long-term water deficiency and its impact on the fluorescence emission of tomato leaves during stress and re-watering. Eur J Hortic Sci 79:60–69
  • Kautz B, Noga G, Hunsche M (2014b) Sensing drought- and salinityimposed stresses on tomato leaves by means of fluorescence techniques. Plant Growth Regul 73:279–288
  • Kocheva K, Lambrev P, Georgiev G, Goltsev V, Karabaliev M (2004) Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 63:121–124
  • Lichtenthaler HK, Babani F (2000) Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Plant Physiol Bioch 38:889–895
  • Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. Crc Cr Rev Anal Chem 19(Suppl. 1):29–85
  • Lichtenthaler HK, Buschmann C, Rinderle U, Schmuck G (1986) Application of chlorophyll fluorescence in ecophysiology. Radiat Environ Biophy 25:297–308
  • Lichtenthaler HK, Wenzel O, Buschmann C, Gitelson A (1998) Plant stress detection by reflectance and fluorescence. Ann N Y Acad Sci 851:271–285
  • Matile P, Hörtensteiner S (1999) Chlorophyll degradation. Annu Rev Plant Phys 50:67–95
  • Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916
  • Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931
  • Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analysed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plantarum 137:188–199
  • Pedrol N, Ramos P, Reigosa MJ (2000) Phenotypic plasticity and acclimation to water deficits in velvet-grass: a long-term greenhouse experiment. Changes in leaf morphology, photosynthesis and stress-induced metabolites. J Plant Physiol 157:383–393
  • Sánchez-Rodríguez E, Rubio-Wilhelmi M, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Romero L, Ruiz JM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178:30–40
  • Shangguan Z, Shao M, Dyckmans J (2000) Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J Plant Physiol 156:46–51
  • Tuba Z, Lichtenthaler HK, Csintalan Z, Nagy Z, Szente K (1996) Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation. Physiol Plantarum 96:383–388
  • Türkan I, Bor M, Özdemir F, Koca H (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of droughttolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci 168:223–231
  • Weatherley PE (1950) Studies in the water relations of the cotton plant. 1. The field measurement of water deficits in leaves. New Phytol 49:81–97
  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguch-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981
  • Zayed MA, Zeid IM (1997) Effect of water and salt stresses on growth, chlorophyll, mineral ions and organic solutes contents, and enzymes activity in mung bean seedlings. Biol Plantarum 40(3):351–356

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e12ac2d4-dfab-4629-827f-323ef191dc4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.