Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 2 |
Tytuł artykułu

Dependence of the filled‑space illusion on the size and location of contextual distractors

Warianty tytułu
Języki publikacji
For most observers, the part of the stimulus that is filled with some visual elements (e.g., distractors) appears larger than the unfilled part of the same size. This illusion of interrupted spatial extent is also known as the ‘filled‑space’ or ‘Oppel‑Kundt’ illusion. Although the continuously filled‑space illusion has been systematically studied for over a century, there is still no generally accepted explanation of its origin. The present study aimed to further develop our computational model of the continuously filled‑space illusion and to examine whether the model predictions successfully account for illusory effects caused by distracting line‑segments of various lengths that are attached to different endpoints (i.e., terminators) of the reference spatial interval of the three‑dot stimulus. Our experiments confirm that the illusion manifests itself along a distracting segment located both inside and outside of the reference interval. In the case of two distractors arranged symmetrically with respect to the lateral terminator, we found that the magnitude of the illusion is approximately equal to the sum of the relevant values obtained with separate distractors. The results of experiments using vertical shifts of distractors supported the model’s assumption regarding the two‑dimensional Gaussian profile of hypothetical areas of weighted spatial summation of neural activity. A good correspondence between the experimental and theoretical results supports the suggestion that perceptual positional biases associated with the context‑evoked increase in neural excitation may be one of the main causes of the continuously filled‑space illusion.
Słowa kluczowe
Opis fizyczny
  • Laboratory of Visual Neurophysiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
  • Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
  • Laboratory of Visual Neurophysiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
  • Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
  • Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
  • Bailes SM (1995) Effects of processing time and stimulus density on apparent width of the Oppel‑Kundt illusion [Ph.D. Thesis]. Concordia University, Montréal, QC, CA. Bergeron A, Matsuo S, Guitton D (2003) Superior colliculus encodes distance to target, not saccade amplitude, in multi‑step gaze shifts. Nat Neurosci 6: 404−413.
  • Bertulis A, Bulatov A (2001) Distortions of length perception in human vision. Biomedicine 1: 3–23.
  • Bertulis A, Surkys T, Bulatov A, Bielevičius A (2014) Temporal dynamics of the Oppel‑Kundt illusion compared to the Müller‑Lyer illusion. Acta Neurobiol Exp 74: 443–455.
  • Blakemore C, Carpenter RHS, Georgeson MA (1970) Lateral inhibition between orientation detectors in the human visual system. Nature 228: 37–39.
  • Botti L (1906) A contribution to the knowledge of variable geometric‑optical illusions of extend (in German). Archiv für die gesamte Psychologie 6: 306–315.
  • Bremmer F, Kaminiarz A, Klingenhoefer S, Churan J (2016) Decoding target distance and saccade amplitude from population activity in the macaque Lateral Intraparietal Area (LIP). Front Integrat Neurosci 10: 30.
  • Bulatov A, Bertulis A (2005) Superimposition of illusory patterns with contrast variations. Acta Neurobiol Exp 65: 51–60.
  • Bulatov A, Bertulis A, Mickienė L (1997) Geometrical illusions: study and modelling. Biol Cybern 77: 395–406.
  • Bulatov A, Bertulis A, Bulatova N, Loginovich Y (2009) Centroid extraction and illusions of extent with different contextual flanks. Acta Neurobiol Exp 69: 504−525.
  • Bulatov A, Bertulis A, Gutauskas A, Mickienė  L, Kadzienė G (2010) Center‑of‑mass alterations and visual illusions of extent. Biol Cybern 102: 475−487.
  • Bulatov A, Bulatova N, Loginovich Y, Surkys T (2015) Illusion of extent evoked by closed two‑dimensional shapes. Biol Cybern 109: 163−178.
  • Bulatov A, Bulatova N, Surkys T, Mickienė  L (2017) An effect of continu‑ ous contextual filling in the filled‑space illusion. Acta Neurobiol Exp 77: 157−167.
  • Bulatov A, Marma V, Bulatova N, Mickienė L (2019) The filled‑space illusion induced by a single‑dot distractor. Acta Neurobiol Exp 79: 39−52.
  • Carandini M, Heeger DJ (2012) Normalization as a canonical neural computation. Nat Rev Neurosci 13: 51−62.
  • Coren S, Hoenig P (1972) Eye movements and decrement in the Oppel‑Kundt illusion. Percept Psychophys 12: 224−225.
  • Coren S, Girgus JS, Ehrlichman H, Hakistan AR (1976) An empirical taxonomy of visual illusions. Percept Psychophys 20: 129−147.
  • Craven BJ, Watt RJ (1989) The use of fractal image statistics in the estimation of lateral spatial extent. Spat Vis 4: 223−239.
  • Deregowski JB, McGeorge P (2006) Oppel‑Kundt illusion in three‑dimensional space. Perception 35: 1307−1314.
  • Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. Neuroimage 39: 647−660.
  • Dworkin L, Bross M (1998) Brightness contrast and exposure time effects on the Oppel‑Kundt illusion. Perception 27: 87.
  • Erdfelder E, Faul F (1994) A class of information integration models for the Oppel‑Kundt illusion (in German). Zeitschrift für Psychologie 202: 133–160.
  • Eriksson ES (1970) A field theory of visual illusions. Br J Psychol 61: 451−466.
  • Field DJ, Hayes A, Hess RF (1993) Contour integration by the human visual system: Evidence for a local “association field”. Vis Res 33: 173–193.
  • Ganz  L (1966) Mechanism of the figural aftereffects. Psychol Rev 73: 128–150.
  • Ginsburg AP (1986) Spatial filtering and visual form perception. In: Boff KR, Koufman L, Thomas JP (Eds.) Handbook of perception and human performance, 34, Wiley and Sons, New York, pp 1–41.
  • Giora E, Gori S (2010) The perceptual expansion of a filled area depends on textural characteristics. Vis Res 50: 2466–2475.
  • Graf ABA, Andersen RA (2014) Inferring eye position from populations of lateral intraparietal neurons. Elife 3: e02813.
  • Hafed ZM, Lee P, Lovejoy LP, Krauzlis RJ (2013) Superior colliculus inactiva‑ tion alters the relationship between covert visual attention and micro‑ saccades. Eur J Neurosci 37: 1169–1181.
  • Hirsch J, DeLaPaz RL, Relkin NR, Victor J, Kim K, Li T, Borden P, Rubin N, Shapley R (1995) Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA 92: 6469–6473.
  • Intriligator J, Cavanagh P (2001) The spatial resolution of visual attention. Cogn Psychol 43: 171−216.
  • Katyal S, Zughni S, Greene C, Ress D (2010) Topography of covert visual attention in human superior colliculus. J  Neurophysiol 104: 3074–3083.
  • Klier EM, Wang H, Crawford JD (2001) The superior colliculus encodes gaze commands in retinal coordinates. Nat Neurosci 4: 627–632.
  • Kojo I, Liinasuo M, Rovamo J (1993) Spatial and temporal properties of illu‑ sory figures. Vis Res 33: 897–901.
  • Krauzlis RJ, Goffart  L, Hafed ZM (2017) Neuronal control of fixation and fixational eye movements. Philos Trans R Soc B Biol Sci 372: 20160205.
  • Krauzlis RJ, Lovejoy LP, Zènon A (2013) Superior colliculus and visual spatial attention. Ann Rev Neurosci 36: 165–182.
  • Levi DM (2008) Crowding – An essential bottleneck for object recognition: A mini‑review. Vis Res 48: 635–654. Lewis EO (1912) The illusion of filled space. Br J Psychol 5: 36–50.
  • Long GM, Murtagh MP (1984) Task and size effects in the Oppel–Kundt and irradiation illusions. J General Psychol 111: 229–240.
  • Mikellidou K, Thompson P (2014) Crossing the line: estimations of line length in the Oppel‑Kundt illusion. J Vision 14: 20. Morgan MJ (1999) The Poggendorff illusion: a bias in the estimation of the orientation of virtual lines by second‑stage filters. Vis Res 39: 2361−2380.
  • Morgan MJ, Hole GJ, Glennerster A (1990) Biases and sensitivities in geometrical illusions. Vis Res 30: 1793−1810.
  • Morgan MJ, Melmoth D, Solomon JA (2013) Linking hypotheses underlying Class A and Class B methods. Vis Neurosci 30: 197–206.
  • Nakahara H, Morita K, Wurtz RH, Optican LM (2006) Saccade‑related spread of activity across superior colliculus may arise from asymmetry of internal connections. J Neurophysiol 96: 765–774.
  • Nakayama K, Mackeben M (1989) Sustained and transient components of focal visual attention. Vis Res 29: 1631−1647.
  • Noguchi K (2003) The relationship between visual illusion and aesthetic preference – an attempt to unify experimental phenomenology and empirical aesthetics. Axiomathes 13: 261–281.
  • Noguchi K, Hilz R, Rentshler I (1990) The effect of grouping of adjacent contours on the Oppel‑Kundt illusion. Jpn J Psychon Sci 8: 57–60.
  • Obonai T (1933) Contributions to the study of psychophysical induction: III. Experiments on the illusions of filled space. Jpn J Psychol 8: 699–720.
  • Olsen SR, Bhandawat V, Wilson RI (2010) Divisive normalization in olfactory population codes. Neuron 66: 287–299.
  • Piaget J, Osterrieth PA (1953) Research on the development of perceptions: XVII. The evolution of the Oppel‑Kundt illusion as a function of age (in French). Archives de Psychologie 34: 1–38.
  • Piaget J, Bang  V (1961) The evolution of the illusion of divided extent (Oppel‑Kundt) in the tachistoscopic presentation (in French). Archives de Psychologie 38: 1–21.
  • Rentschler I, Hilz R, Grimm W (1975) Processing of positional information in the human visual system. Nature 253: 444−445.
  • Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61: 168–185. Robinson JO (1998) The psychology of visual illusion. Dover Publications, New York, USA. Sereno AB, Lehky SR (2011) Population coding of visual space: comparison of spatial representations in dorsal and ventral pathways. Front Comput Neurosci 4: 159.
  • Sierra‑Vázquez V, Serrano‑Pedraza I (2007) Single‑band amplitude demodulation of Müller‑Lyer illusion images. Spanish J Psychol 10: 3−19.
  • Silva MF, Brascamp JW, Ferreira S, Castelo‑Branco  M, Dumoulin SO, Harvey BM (2018) Radial asymmetries in population receptive field size and cortical magnification factor in early visual cortex. NeuroIm‑ age 167: 41–52.
  • Spiegel HG (1937) On the influence of the intermediate field on visually assessed distances (in German). Psychologische Forschung 21: 327–383.
  • Strasburger H, Malania  M (2013) Source confusion is a  major cause of crowding. J Vision 13: 24. Strasburger H, Rentschler I, Jüttner M (2011) Peripheral vision and pattern recognition: A review. J Vision 11: 13.
  • Surkys T (2007) Influence of colour and luminance contrast on perceptual distortions of stimulus geometry [Ph.D. Thesis]. Kaunas University of Medicine, Kaunas, LT. Surkys T, Bertulis A, Bulatov A (2006) Delboeuf illusion study. Medicina (Kaunas) 42: 673–681.
  • Tannazzo T, Kurylo DD, Bukhari F (2014) Perceptual grouping across eccentricity. Vis Res 103: 101−108.
  • Taouali W, Goffart L, Alexandre F, Rougier NP (2015) A parsimonious computational model of visual target position encoding in the superior colliculus. Biol Cybern 109: 549–559.
  • Taylor MM (1962) Geometry of a visual illusion. J Opt Soc Am 52: 565–569. Vokoun CR, Huang X, Jackson MB, Basso MA (2014) Response normal‑ ization in the superficial layers of the superior colliculus as a possible mechanism for saccadic averaging. J Neurosci 34: 7976–7987.
  • Wackermann J (2017) The Oppel‑Kundt illusion. In: Shapiro A, Todorović D (Eds.), Oxford compendium of visual illusion, Oxford University Press, New York, pp 303–307.
  • Wackermann J (2012) Determinants of filled/empty optical illusion: Influence of luminance contrast and polarity. Acta Neurobiol Exp 72: 412–420.
  • Wackermann J, Kastner K (2009) Paradoxical form of filled/empty optical illusion. Acta Neurobiol Exp 69: 560–563.
  • Wackermann J, Kastner K (2010) Determinants of filled/empty optical illusion: search for the locus of maximal effect. Acta Neurobiol Exp 70: 423–434.
  • Wallis TSA, Bex PJ (2012) Image correlates of crowding in natural scenes. J Vision 12: 6. Watt RJ (1990) The primal sketch in human vision. In: Blake A, Troscianko T (Eds.), AI and the Eye, Wiley and Sons, New York, pp147‑180.
  • Welbourne LE, Morland AB, Wade AR (2018) Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI. NeuroImage 167: 84–94.
  • Whitney D, Levi DM (2011) Visual crowding: a  fundamental limit on conscious perception and object recognition. Trends Cogn Sci 15: 160–168.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.