PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 3 |

Tytuł artykułu

Comparison of different geostatistical methods for soil mapping using remote sensing and environmental variables in Poshtkouh rangelands, Iran

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aims of this study were: 1) to map the different soil parameters using three geostatistical approaches, including; ordinary kriging (OK), cokriging (CK), and regression kriging (RK), 2) to compare the accuracy of maps created by the mentioned methods, and 3) to evaluate the efficiency of using ancillary data such as satellite images, elevation, precipitation, and slope to improve the accuracy of estimations. In the rangelands of the Poushtkouh area of central Iran, 112 soil samples were collected. The maps of different soil parameters were created using the mentioned methods. To assess the accuracy of these maps, cross-validation analyses were conducted. The cross-validation results were assessed by the root mean square error (RMSE) and normal QQ-plot together with sum and average error to suggest the best estimation approach for mapping each soil parameter. The results have shown that, in most cases, taking the ancillary data into account in estimations has increased the accuracy of the created maps. Except for clay, the OK method was suggested as the best estimation method, and the RK and CK were the best recommended estimation methods for the rest of the parameters. The results suggest the application of the framework of this study for similar areas.

Wydawca

-

Rocznik

Tom

23

Numer

3

Opis fizyczny

p.737-751,fig.,ref.

Twórcy

  • Department of Cartography, GIS and Remote Sensing, University of Goettingen, Germany
  • Faculty of Natural Resources and Desert Studies, Yazd University, Iran
autor
  • Department of Cartography, GIS and Remote Sensing, University of Goettingen, Germany
  • Department of Soil Science, Shahrekord Univeristy, Iran
  • Faculty of Natural Resources, Tehran University, Iran
  • Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Bibliografia

  • 1. KAVIANPOOR H., ESMALI OURI, A., JAFARIAN JELOUDAR Z., KAVIAN A. Spatial variability of some chemical and physical soil properties in Nesho mountainous rangelands, American Journal of Environmental Engineering, 2, (1), 34, 2012.
  • 2. BURKE A. Classification and ordination of plant communities of the Nauklaft mountain, Namibia. J. Veg. Sci, 12, 53, 2001.
  • 3. CHANETON E.J., AND AVADO R.S.L. Soil nutrients and salinity after long-term grazing exclusion in flooding pama grassland. J. Range Manage., 49, 182, 1996.
  • 4. ZHANG C.S., MCGRATH D. Geostatistical and GIS analysis on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119, 261, 2004.
  • 5. ETEMA C., WARDLE D.A. Spatial soil ecology. Trends Ecol. Evol., 17, 177, 2002.
  • 6. WEBSTER R. Soil resources and their assessment. Philos. T. Roy. Soc. B. 352, 963, 1997.
  • 7. ELDEIRY A. A., GARCIA L. A. Comparison of Ordinary Kriging, Regression Kriging, and Cokriging Techniques to Estimate Soil Salinity Using LANDSAT Images. J. Irrig. Drain. E-ASCE, 2010.
  • 8. MCBRATNEY A.B., MENDONCA SANTOS M.L., MINASNY B. On digital soil mapping. Geoderma 117, 3, 2003.
  • 9. GOOVAERTS P. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, USA, 1997.
  • 10. MCBRATNEY A.B., ODEH I.O.A., BISHOP T.F.A., DUNBAR M.S., SHATAR M. An Overview of Pedometric Techniques for Use in Soil Survey. Geoderma. 97, 293, 2000.
  • 11. ODEH I. O. A., MCBRATNEY A. B., CHITTLEBOROUGH D. J. Further results on prediction of soil properties from terrain attributes: Heterotopic cokriging and regression-kriging. Geoderma, 67, (3-4), 215, 1995.
  • 12. TRIANTAFILIS J., ODEH I. O. A., MCBRATNEY A. B. Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Sci. Soc. Am. J., 65, (3), 869, 2001.
  • 13. ODEH I.O.A., MCBRATNEY A.B., CHITTLEBOROUGH D.J. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 63, 97, 1994.
  • 14. BISHOP T. F. A., MCBRATNEY A. B. A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma 103, 149, 2001.
  • 15. HENGL T., HEUVELINK G.B.M., STEIN A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120, 75, 2004.
  • 16. SULLIVAN D. G., SHAW J. N., RICKMAN D., MASK P. L., LUVALL J. C. Using remote sensing data to evaluate surface soil properties in Alabama ultisols. Soil Sci., 170, 954, 2005.
  • 17. ADAMCHUK V.I., MORGAN M.T., LOWENBERG-DEBOER J.M. A model for agro-economic analysis of soil pH mapping. Precision Agriculture 5, 109, 2004.
  • 18. BISHOP T. F. A., MCBRATNEY A. B. Creating Field Extent Digital Elevation Models for Precision Agriculture. Precision Agriculture, 3, (1), 37, 2002.
  • 19. TAJGARDAN T., AYOUBI S., SHATAEE S., SAHRAWAT K. L. Soil surface salinity prediction using ASTER data: comparing statistical and geostatistical models. Australian Journal of Basic and Applied Sciences, 4, (3), 457, 2010.
  • 20. IQBAL J., THOMASSON J. A., JENKINS J. N., OWENS P. R., WHISLER F. D. Spatial variability analysis of soil physical properties of alluvial soils. Soil Sci. Soc. Am. J., 69, 1338, 2005.
  • 21. SIMBAHAN G. C., DOBERMANN A., GOOVAERTS P. Fine-resolution mapping of soil organic carbon based on multivariate secondary data, Geoderma 132, 471, 2006.
  • 22. SOIL SURVEY STAFF, Keys To Soil Taxonomy, Eleventh Edition, Nrcs, USDA. 2010.
  • 23. DEUTSCH, CLAYTON V. Geostatistical Reservoir Modeling. Oxford: Oxford UP, Print, 2002.
  • 24. MILLER J., FRANKLIN J., ASPINALL R. Incorporating spatial dependence in predictive vegetation models. Ecol. Model., 202, (3-4), 225, 2007.
  • 25. VAUCLIN M., VIEIRA S. R., VACHAUD G., NIELSEN D. R. The use of cokriging with limited field observations. Soil Sci. Soc. Am. J., 47, 175, 1983.
  • 26. TRANGMAR B. B., YOST R. S., WADE M. K., UEHARA G., SUDJADI M. Spatial variation of soil properties and rice yield on recently cleared land. Soil Sci. Soc. Am. J., 51, 668, 1987.
  • 27. YATES S. R., WARRICK A. W. Estimating soil water content using cokriging. Soil Sci. Soc. Am. J., 51, 23, 1987.
  • 28. PEBESMA E. J. The role of external variables and GIS databases in geostatistical analysis. Transactions in GIS 10, (4), 615, 2006.
  • 29. VANDERLINDEN K. Analysis of hydrological processes with different spatiotemporal scales, PhD thesis, University of Cordoba, Spain, pp. 65-125, 2001.
  • 30. ZARE CHAHOUKI M. A. Modeling of plant distribution in arid and semi-arid rangelands (Case study: Poshtkouh area), PhD thesis, Faculty of Natural Resources, University of Tehran, Iran, 2006.
  • 31. ESFANDIARPOOR I., MOHAMMADI J., SALEHI M.H., TOOMANIAN N., POCH R.M. Assessing geopedological soil mapping approach by statistical and geostatistical methods: A case study in the Borujen region, Central Iran. Catena 82, 1-14, 2010.
  • 32. BAGHERI BODAGHABADI M., SALEHI M.H., MARTÍNEZ-CASASNOVAS J. A., MOHAMMADI J., TOOMANIAN N., ESFANDIARPOOR BORUJENI I. Using Canonical Correspondence Analysis (CCA) to identify the most important DEM attributes for digital soil mapping applications. Catena 86, 66, 2011.
  • 33. ELDEIRY A., GARCIA L. A. Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing. Soil Sci. Soc. Am. J., 72, (1), 201, 2008.
  • 34. MCKENZIE NEIL J., RYAN PHILIP J. Spatial prediction of soil properties using environmental correlation. Geoderma 89, 67, 1999.
  • 35 AMINI M. Mapping risk of cadmium and lead contamination to human health in soils of Central Iran. Sci. Total Environ. 347, 64, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e1151328-aa9f-4781-bf75-008d9b735053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.