Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Adsorption mechanism of heavy metals in heavy metal/pesticide coexisting sediment systems through factional factorial design assisted by 2D-QSAR models


Warianty tytułu

Języki publikacji



Resolution V of the 2¹⁰⁻³ fractional factorial design method was used to identify the main effects and second-order interaction effects of pollutants (copper, cadmium, lead, zinc, nickel, dimethoate, metalaxyl, atrazine, malathion, and prometryn) on metals adsorption onto sediments, and 2D-QSAR models were established to reveal the relationships between metal ion characteristics and the effects of pollutants on metals adsorption. The effects on Cd adsorption were attributed to the main effects of pollutant factor concentrations, while the effects on Cu, Pb, Zn, and Ni adsorption were from the second-order interaction effect. No interference with Cd adsorption was observed, and the synergistic contribution of the main effects and second-order interaction effects on Ni adsorption was 67.26%. Additionally, the antagonistic contribution rates to Cu, Zn, and Pb adsorption reached 55.31%, 73.16%, and 86.23%, respectively. Significant correlations existed between the main effects and ionization potential (IP), the change in ionization potential (ΔIP) and ion hydrolysis ability of metals, and the second-order interaction effects with atomic number, atomic weight, and polarizing power (Z²/r) of metals. The electrochemical potential, ΔIP and IP of metals were found to promote adsorption, Z²/r, electronegativity and atomic radius of metals to inhibit adsorption significantly. Overall, the results provide theoretical support that helps elucidate compound pollution regulation among heavy metal pollutants in complex environmental systems.

Słowa kluczowe








Opis fizyczny



  • College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
  • College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
  • College of Environmental Science and Engineering, North China Electric Power University, Beijing, China


  • 1. BAI J., CUI B., CHEN B., ZHANG K., DENG W., GAO H., XIAO R. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol. Model. 222 (2), 301, 2011.
  • 2. SULTANA M.S., JOLLY Y.N., YEASMIN S., ISLAM A., SATTER S., TAREQ S.M. Chapter 12–Transfer of heavy metals and radionuclides from soil to vegetables and plants in Bangladesh. Soil Remediation and Plants. 331, 2015.
  • 3. HUSAIN A., ASHHAR M.M., JAVED I. Analysis of industrial wastewater in Aligarh City. J. Chem. Pharm. Res. 6 (1), 614, 2014.
  • 4. D’AMATO G., PAWANKAR R., VITALE C., LANZA M., MOLINO A., STANZIOLA A., SANDUZZI A., VATRELLA A., D’AMATO M. Climate change and air pollution: effects on respiratory allergy. Allergy Asthma Immu. Res. 8 (5), 391, 2016.
  • 5. GOVIL P.K., SORLIE J.E., MURTHY N.N. Soil contamination of heavy metals in the Katedan Industrial Development Area, Hyderabad, India. Environ. Monit. Assess. 140 (1-3), 313, 2008.
  • 6. MUSTAFA G., KOMATSU S. Toxicity of heavy metals and metal-containing nanoparticles on plants. BBA-Proteins Proteom. 1864 (8), 932, 2016.
  • 7. JU Y.R., CHEN C.W., CHEN C.F., CHUANG X.Y., DONG C.D. Assessment of heavy metals in aquaculture fishes collected from southwest coast of Taiwan and human consumption risk. Int. Biodeter. Biodegr. 124, 314, 2017.
  • 8. CHI T.V., LIN C., SHERN C.C., YEH G., LE V.G., TRAN H.T. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecol. Indic. 82, 32, 2017.
  • 9. BILLIONNET C., SHERRILL D., ANNESI-MAESANO I. Estimating the health effects of exposure to multi-pollutant mixture. Ann. Epidemiol. 22 (2), 126, 2012.
  • 10. GHAZY H.A., MAS A.R., EI NAHAS A.F., MAHMOUD S. Assessment of complex water pollution with heavy metals and Pyrethroid pesticides on transcript levels of Metallothionine and immune related genes. Fish Shellfish Immun. 68, 318, 2017.
  • 11. JAIN C.K., GUPTA H., CHAKRAPANI G.J. Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environ. Monit. Assess. 141, 35, 2008.
  • 12. WEI M., QIN Y., ZHENG B., ZHANG L. Heavy metal pollution in Tianjin Bohai Bay, China. J. Environ. Sci. 20 (7), 814, 2008.
  • 13. BARJHOUX I., CLÉRANDEAU C., MENACH K.L., ANSCHUTZ P., GONZALEZ P., BUDZINSKI H., MORIN B., BAUDRIMONT M., CACHOT J. A comprehensive study of the toxicity of natural multi-contaminated sediments: New insights brought by the use of a combined approach using the medaka embryo-larval assay and physico-chemical analyses. Ecotoxicol. Environ. Saf. 142, 509, 2017.
  • 14. WANG C., LIU S., ZHAO Q., DENG L., DONG S. Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River. Ecotoxicol. Environ. Saf. 82, 32, 2012.
  • 15. GUO S.H., WANG X.L., LI Y., CHEN J.J., YANG J.C. Investigation on Fe, Mn, Zn, Cu, Pb and Cd fractions in the natural surface coating samples and surficial sediments in the Songhua River, China. J. Environ. Sci. 18 (6), 1193, 2006.
  • 16. GAO L., WANG Z., SHAN J., CHEN J., TANG C., YI M., ZHAO X. Distribution characteristics and sources of trace metals in sediment cores from a trans-boundary watercourse: an example from the Shima River, Pearl River Delta. Ecotoxicol. Environ. Saf. 134, 186, 2016.
  • 17. LI S.S., GAO Q., WANG X.L., LI Y. Using multiple regression adsorption models to estimate Zn and Cu adsorptions onto Fe oxides, Mn oxides, organic materials and their blends in surficial sediments. Fresenius Environ. Bull. 19 (8), 1466, 2010.
  • 18. LI H., SHENG Y., YE J., FAN J., GAO M., HAO G. Baseline survey of sediments and marine organisms in Liaohe estuary: heavy metals, polychlorinated biphenyls and organochlorine pesticides. Mar. Pollut. Bull. 114 (1), 555, 2016.
  • 19. FONTES M.P.F., SANTOS G.C.D. Santos. Lability and sorption of heavy metals as related to chemical, physical, and mineralogical caracteristics of highly weathered soils. J. Soil. Sediment. 10 (4), 774, 2010.
  • 20. LI X., WANG Y., Li B., FENG C., CHEN Y., SHEN Z. Distribution and speciation of heavy metals in surface sediments from the Yangtze estuary and coastal areas. Environ. Earth Sci. 69 (5), 1537, 2013.
  • 21. WEI T., LI G., MEI B., MIN Y., PENG J., BARROW C.J., YANG W., WANG H. The study of adsorption mechanism of mixed pesticides prometryne-acetochlor in the soil-water system. Int. Biodeterior. Biodegrad. 102, 281, 2015.
  • 22. CHENG B., LI S., WANG M., LI Y. Investigation of combined pollution between malathion and a variety of pollutants based on the fractional factorial design (resolution IV). Pol. J. Environ. Stud. 24 (5), 1939, 2015.
  • 23. WANG M., LI X.L., LI Y. Characteristic of competitive adsorption of dimethoate with a variety of pollutants on surficial sediments through fractional factorial design, Adv. Mater. Res. 599, 467, 2012.
  • 24. GU W.W., CHENG B.C., LI Y. Interference adsorption of cadmium with a variety of pollutants in sediments based on fractional factorial design (resolution V). Pol. J. Environ. Stud. 26 (1), 47, 2017.
  • 25. CHENG B.C. Adsorption mechanism of heavy metals and pesticides in sediments based on fractional factorial design (resolution V), master degree thesis. North China Electric Power University, Beijing, China. 2015 [In Chinese].
  • 26. LI Y., GAO Q., WANG X.L., DONG D.M., WANG A. Synergetic and antagonistic effects of cadmium on the adsorption of atrazine in the surficial sediments. Chem. Res. Chinese Universities. 25 (2), 155, 2009.
  • 27. DUCHOWICZ P.R., CASTAŇETA H., CASTRO E.A., FERNÁNDEZ F.M., VICENTE J. L. QSPR prediction of the Dubinin-Radushkevich’s k parameter for the adsorption of organic vapors on BPL carbon. Atmos. Environ. 40 (16), 2929, 2006.
  • 28. LI Y., LI X.L., DU X.Y., WANG M., XIN J., HU Y., WANG Y. Using the QICAR model to correlate metal ion characteristics with toxicity order numbers. Hum. Ecol. Risk Assess. 18 (6), 1255, 2012.
  • 29. MCCLOSKEY J.T., NEWMAN M.C., CLARK S.B. Predicting the relative toxicity of metal ions using ion characteristics: Microtox® bioluminescence assay. Environ. Toxicol. Chem. 15 (10), 1730, 1996.
  • 30. WOLTERBEEK H.T., VERBURG T.G. Predicting metal toxicity revisited: general properties vs. specific effect. Sci. Total Environ. 279 (1-3), 87, 2001.
  • 31. LITON M.A.K., SALMA U., BHOWMICK A.C. Cytotoxicity and 2D-QSAR study of some heterocyclic compounds. Arabian J. Chem. 7 (5), 639, 2014.
  • 32. SONI H.M., PATEL P.K., CHHABRIA M.T., RANA D.N., MAHAJAN B.M., BRAHMKSHATRIYA P.S. 2D-QSAR study of a series of pyrazoline-based anti-tubercular agents using genetic function approximation. Comput. Chem. 3 (4), 45, 2015.
  • 33. CHEN C., WANG J.L. Correlating metal ionic characteristics with biosorption capacity of an yeast using QSAR model based on classifications of metal ions. Acta Scien. Circum. 28 (1), 76, 2008 [In Chinese].
  • 34. ZHOU D.M., LI L.Z., PEIJNENBURG W.J., OWNBY D.R., HENDRIKS A.J., WANG P., LI D. A QICAR approach for quantifying binding constants for metal-ligand complexes. Ecotoxicol. Environ. Saf. 74 (4), 1036, 2011.
  • 35. KANG D.J., XIE D.Y., KUANG S., JIANG X., SUN J., TANG H., FU F.F. Adsorption mechanism of extracellular polymeric substances in activated sludge on Pb²⁺ and Cu²⁺. China Water & Wastewater. 32 (21), 28, 2016 [In Chinese].
  • 36. CHEN C., WANG J.L. Correlating metal ionic characteristics with biosorption capacity using QSAR model. Chemosphere, 69 (10), 1610, 2007.
  • 37. BEHNAMFARD A., SALARIRAD M.M. Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J. Hazard. Mater. 170 (1), 127, 2009.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.