PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 4 |

Tytuł artykułu

Simple electrochemical determination of hydrazine in water

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Hydrazine in water samples is determined by constant current chronopotentiometry in porous carbon electrodes. Hydrazine in alkaline solutions is oxidised to nitrogen in the pores of the electrode by constant current. Two types of electrodes made of reticulated vitreous carbon (RVC) were used, one fabricated from crushed RVC particles, the other with the original RVC material of 100 ppi porosity. The former is suitable for hydrazine concentrations above 0.7 mg·dm⁻³ up to 50 mg·dm⁻³, the latter for the 8-700 µg·dm⁻³ range. The method was used for water samples, including boiler water.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

4

Opis fizyczny

p.1659-1666,fig.,ref.

Twórcy

autor
  • Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
autor
  • Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
  • Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, J. Herdu 2, 917 01 Trnava, Slovakia
autor
  • Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
autor
  • Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
autor
  • Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
  • Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, J. Herdu 2, 917 01 Trnava, Slovakia

Bibliografia

  • 1. ASTM Manual of Industrial Water, D1385-78, 376, 1979.
  • 2. SAFAVI A., ENSAFI A.A. Kinetic spectrophotometric determination of hydrazine. Anal. Chim. Acta 300, 307, 1995.
  • 3. SZEBELLEDY L., SOMOGYI Z. Coulometric analysis as methods of precision. V. Determination of hydrazine. Z. Anal. Chem. 112, 391, 1938.
  • 4. IKEDE S., SUTAKE H., KOHRI Y. Flow injection analysis with an amperometric detector utilizing the redox reaction of iodate ion. Chem. Lett. 6, 873, 1984.
  • 5. MCBRIDE W.R., HENRY R.A., SKOLNIK S. Potentiometric analytical methods for hydrazino compounds. Anal. Chem. 23, 890, 1951.
  • 6. GAWARGIOUS Y.A., BESEDA A. Iodometric microdetermination of hydrazine by amplification reactions. Talanta 22, 757, 1975.
  • 7. SAFAVI A., BAEZZAT M.R. Flow injection chemiluminescence determination of hydrazine. Anal. Chim. Acta 358, 121, 1998.
  • 8. KORINEK K., KORYTA J., MUSILOVA M. Electrooxidation of hydrazine on mercury, silver, and gold electrodes in alkaline solutions. J. Electroanal. Chem. 21, 319, 1969.
  • 9. EISNER U., ZEMER Y. Anodic oxidation of hydrazine and its derivatives. III. Oxidation of methyl hydrazine on mercury electrodes in alkaline solution. J. Electroanal. Chem. 34, 81, 1972.
  • 10. FLEISCHMANN M., KORINEK K., PLETCHER D. Oxidation of hydrazine at a nickel anode in alkaline solution. J. Electroanal. Chem. 34, 499, 1972.
  • 11. TANG Y.-Y., KAO C.-L., CHEN P.-Y. Electrochemical detection of hydrazine using a highly sensitive nanoporous gold electrode. Anal. Chim. Acta, 711, 32, 2012.
  • 12. PETEK M., BRUCKENSTEIN S. Isotopic labelling investigation of the mechanism of the electro oxidation of hydrazine at platinum. Electrochemical mass spectrometric study. J. Electroanal. Chem., 47, 329, 1973.
  • 13. ROSCA V., KOPER M. T. M. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions. Electrochim. Acta 53, 5199, 2008.
  • 14. ROSCA V., DUCA M., DE GROOT M. T., KOPER M. T. M. Nitrogen Cycle Electrocatalysis. Chem. Rev. 109, 2209, 2009.
  • 15. ALDOUS L., COMPTON R. G. The mechanism of hydrazine electro-oxidation revealed by platinum microelectrodes: role of residual oxides. Phys. Chem. Chem. Phys. 13, 5279, 2011.
  • 16. SUN H., DONG L., YU H., HUO M. Direct electrochemical oxidation and detection of hydrazine on a boron doped diamond (BDD) electrode. Russian J. Electrochem. 49, 883, 2013.
  • 17. JAYASRI D., NARAYANAN S.S. Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. J. Hazard. Mater. 144, 348, 2007.
  • 18. AZIZ M.A., KAWDE A.-N. Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine. Copper-palladium alloy nanoparticle plated electrodes for the electrocatalytic determination of hydrazine. Talanta 115, 214, 2013.
  • 19. YANG C.-C., KUMAR A.S., KUO M.-C., CHIEN S.-H., ZEN J.-M. Copper-palladium alloy nanoparticle plated electrodes for the electrocatalytic determination of hydrazine. Anal. Chim. Acta, 554, 66, 2005.
  • 20. MAZLOUM-ARDAKANI M., KHOSHROO A. An electrochemical study of benzofuran derivative in modified electrode-based CNT/ionic liquids for determining nanomolar concentrations of hydrazine. Electrochim. Acta 103, 77, 2013.
  • 21. DIAS F. X., JASELSKIS B. Voltammetric determination of hydrazine and hydroxylamine. Analyst 108, 76, 1983.
  • 22. RAOOF J.-B., OJANI R., RAMINE M. Electrocatalytic oxidation and voltammetric determination of hydrazine on the tetrabromo-p-benzoquinone modified carbon paste electrode. Electroanalysis 19, 597, 2007.
  • 23. ENSAFI A. A., LOTFI M., KARIMI-MALEH H. New Modified-Multiwall Carbon Nanotubes Paste Electrode for Electrocatalytic Oxidation and Determination of Hydrazine Using Square Wave Voltammetry. Chinese J. Catalysis 33, 487, 2012.
  • 24. RAOOF J.-B., OJANI R., MOHAMMADPOUR Z. Electrocatalytic Oxidation and Voltammetric Determination of Hydrazine by 1,1′-Ferrocenedicarboxylic Acid at Glassy Carbon Electrode. Int. J. Electrochem. Sci. 5, 177, 2010.
  • 25. MAZLOUM-ARDAKANI M., SADEGHIANE A., MOOSAVIZADEH S. H., KARIMI M. A., MASHHADIZADEH M. H. Electrocatalytic Determination of Hydrazine using Glassy Carbon Electrode with Calmagates. Anal. Bioanal. Electrochem. 4, 224, 2009.
  • 26. RAOOF J.-B., OJANI R., JAMALI F., HOSSEINI S. R. Electrochemical detection of hydrazine using a copper oxide nanoparticle modified glassy carbon electrode. Caspian J. Chem. 1, 73, 2012.
  • 27. CHAKRABORTY S., RAJ C. R. Carbon nanotube supported platinum nanoparticles for the voltammetric sensing of hydrazine. Sensors and Actuators B: Chemical 147, 222, 2010.
  • 28. PINTER J. S., BROWN K. L., DEYOUNG P. A., PEASLEE G. F. Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes. Talanta 71, 1219, 2007.
  • 29. CONCEIÇÃOA C. D. C., FARIAA R. C., FATIBELLO-FILHOA O., TANAKAB A. A. Electrocatalytic Oxidation and Voltammetric Determination of Hydrazine in Industrial Boiler Feed Water Using a Cobalt Phthalocyanine-modified Electrode. Anal. Lett. 41, 1010, 2008.
  • 30. SHANG L., ZHAO F., ZENG B. Electrocatalytic Oxidation and Determination of Hydrazine at an AuCu Nanoparticles – Graphene – Ionic Liquid Composite Film Coated Glassy Carbon Electrode. Electroanalysis 24, 2380, 2012.
  • 31. BARON R., ŠLJUKIĆ B., SALTER C., CROSSLEY A., COMPTON R. G. Development of an electrochemical sensor nanoarray for hydrazine detection using a combinatorial approach. Electroanalysis 19, 1062, 2007.
  • 32. BEINROHR E. Flow-Through Chronopotentiometry in Waste Water Analysis, In: F.S.G. Einschlag (Ed): Waste Water. Evaluation and Management, InTech, Rijeka, Croatia, pp. 71-92, 2011.
  • 33. BEINROHR E., CAKRT M., DZUROV J., JURICA L., BROEKAERT J.A.C. Simultaneous calibrationeless determination of zinc, cadmium, lead and copper by flow-through stripping chronopotentiometry. Electroanalysis 11, 1137, 1999.
  • 34. THOMSEN K.N., SKOV H.J., DAM M.E.R. A flexible instrument for voltammetry, amperometry and stripping potentiometry. Anal. Chim. Acta 293, 1, 1994.
  • 35. HU A., DESSY R.E., GRANELI A. Potentiometric stripping with matrix exchange techniques in flow injection analysis of heavy metals in groundwaters. Anal. Chem. 55, 320, 1983.
  • 36. BARD A.L., FAULKNER L.R. Electrochemical Methods, Chapter 10.6, Wiley, New York, 1980.
  • 37. BEINROHR E. Flow-through coulometry as a calibrationless method in inorganic trace analysis. Accred. Qual. Assur. 6, 321, 2001.
  • 38. HALL H. K. Correlation of the Base Strengths of Amines. J. Am. Chem. Soc. 79, 5441, 1957.
  • 39. SAND H. J. S. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric cid. Philosophical Magazine 1, 45, 1901.
  • 40. MOCAK J., BOND A. M., MITCHELL S., SCOLLARY G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (technical report). Pure Appl. Chem. 69, 297, 1997.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e0de6e6b-c20a-4090-8022-4d3fc64b1a82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.