Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 58 | 4 |
Tytuł artykułu

Effects of low doses of gamma rays on the stability of normal and diabetic erythrocytes

Warianty tytułu
Języki publikacji
We studied the influence of low doses of γ radiation (from 0.04 to 1.8 mGy) on the stability of human red blood cells (RBC) from healthy donors and diabetic patients using absorption spectroscopy. Because of the alteration of many enzymatic pathways in diabetic RBCs resulting in strong modification of the lipid and protein membrane components one could expect that the ionizing γ-radiation should influence the stability of the healthy and diabetic cells in a different way. Indeed, distinct discontinuities and monotonic changes of hemolysis detected in the healthy and diabetic RBCs suggest that various enzymatic and chemical processes are activated in these membranes by γ radiation. Mössbauer measurements showed that only the highest applied dose of γ radiation caused modification of hemoglobin in both types of RBCs.
Opis fizyczny
  • Adak S, Chowdhury S, Bhattacharyya M (2008) Dynamic and electrokinetic behavior of erythrocyte membrane in diabetes mellitus and diabetic cardiovascular disease. Biochim Biophys Acta 1780: 108-115. 
  • Agarwal P, Ray VL, Choudhury N, Chaudhary RK (2005) Effect of pre-storage gamma irradiation on red blood cells. Indian J Med Res 122: 385-387. 
  • Arai K, Maguchi S, Fujii S, Ishibashi H, Oikawa K, Taniguchi NJ (1987) Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites.J Biol Chem 262: 16969-16972. 
  • Asgary S, Naderi GH, Askari N (2005) Protective effect of flavonoids against red blood cell hemolysis by free radicals. Exp Clin Cardiol 10: 88-90. 
  • Azzam EI, de Toledo SM, Gooding T, Little JB (1998) Intercellular Communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat Res 150: 497-504. 
  • Azzam EI, de Toledo SM, Little JB (2001) Direct evidence for the participation of gap-junction mediated intercellular communication in the transmission of damage signals from α-particle irradiated to non-irradiated cells. Proc Nat Acad Sci USA 98: 473-478. 
  • Bagchi K, Puri S (1998) Free radicals and antioxidants in health and disease. East Mediter Health J 4: 350-360.
  • Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 22: 111-180. 
  • Bashir S, Naik F, Cardigan R, Thomas S (2011) Effect of X-irradiation on the quality of red cell concentrates. Vox Sanguinis. DOI: 10.1111/j.1423-0410.2011.01479.x 
  • Baskar R (2010) Emerging role of radiation induced bystander effects. Cell communications and carcinogenesis. Genome Integrity 1: 13. 
  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48: 1-9. 
  • Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405-412. 
  • Benderitter M, Vincent-Genod L, Pouget JP, Voisin P (2003) The Cell Membrane as a Biosensor of Oxidative Stress Induced by Radiation Exposure: A Multiparameter Investigation. Radiat Res 159: 471-483. 
  • Błaszczak R, Kędziora J, Ertel D, Rutkowski M, Kędziora-Kornatowska K, Kornatowski T, Rysz J, Kujawski K, Stachura D (2005) Selected antioxidative enzyme activities in patients with diabetes mellitus type 2. Arch Med Sci 1: 144-147.
  • Burda K, Hrynkiewicz A, Kołoczek H, Stanek J, Strzałka K (1995) Mixed valence state in ironporphyrin aggregates. Biochim Biophys Acta 1244: 345-350. 
  • Burda K, Lekki K, Dubiel S, Cieślak J, Lekka M, Stanek J, Stachura Z (2002) Molecular mechanism of hemolysis caused by organometallic compounds. Appl Organometal Chem 10: 148-154.
  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61: 192-208. 
  • Chen WL, Luan YC, Shieh MC, Chen ST, Kung HT, Soong KL, Yeh YC, Chou TS, Mong SH, Wu JT, Sun CP, Deng WP, Wu MF, Shen ML (2007) Effects of cobalt-60 exposure on health of taiwan residents suggest new approach needed in radiation protection. Dose-Response 5: 63-75. 
  • Chiu D, Kuypers F, Lubin B (1989) Lipid peroxidation in human red cells. Semin Hematol 26: 257-276. 
  • Cicha I, Suzuki Y, Tateishi N, Shiba M, Muraoka M, Tadokoro K, Maeda N (2000) Gamma-ray-irradiated red blood cells stored in mannitol-adenine-phosphate medium: rheological evaluation and susceptibility to oxidative stress. Vox Sang 79: 75-82. 
  • Cohen BL (2008) The linear no-threshold theory of radiation carcinogenesis should be rejected. J Am Physical Sur 13: 70-76.
  • Dainiak D, Tan BJ (1995) Utility of biological membranes as indicators for radiation exposure: alterations in membrane structure and function overtime. Stem Cells 13: 142-152. 
  • Dainiak N (1997) Mechanisms of radiation injury: impact of molecular medicine. Stem Cells 15: 1-5. 
  • Davey RJ, McCoy NC, Yu M, Sullivan JA, Spiegel DM, Leitman SF (1992) The effect of prestorage irradiation on posttransfusion red cell survival. Transfusion 32: 525-528. 
  • Fasano R, Luban NL (2008) Blood component therapy. Pediatr Clin North Am 55: 421-445. 
  • Feinendegen LE (2005) Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78: 3-7. 
  • Graeub R (1994) Petkau effect, the devasting effect of nuclear radiation on human health and the environment. 2nd edn. Four Walls Eight Windows.
  • Gwoździński K (1991) Ionizing radiation-induced structural modification of human red blood cells. Radiat Environ Biophys 30: 45-52. 
  • Ha H, Kim KH (1999) Pathogenesis of diabetic nephropathy: the role of oxidative stress and protein kinase C. Diabetes Res Clin Pract 45: 147-151. 
  • Hannig J, Lee RC (2000) Structural changes in cell membranes after ionizing electromagnetic field exposure. IEEE Trans Plasma Sci 28: 97-101.
  • Harman D (1992) Role of free radicals in ageing and disease. Ann N Y Acad Sci 673: 126-141. 
  • Hirayama J, Abe H, Azuma H, Ikeda H (2005) Leakage of potassium from red blood cells following gamma ray irradiation in the presence of dipyridamole, trolox, human plasma or mannitol. Biol Pharm Bull 28: 1318-1320. 
  • Iyer R, Lehnert BE (2002) Low dose, low-LET ionizing radiation-induced radioadaptation and associated early responses in unirradiated cells. Mutat Res 503: 1-9. 
  • Jayashree B, Devasagayam TPA, Kesavan PC (2001) Low dose radiobiology: mechanistic considerations. Curr Sci 80: 515-523.
  • Johnson F, Giulivi C (2005) Superoxide dismutases and their impact upon human health. Mol Aspects Med 26: 340-352. 
  • Kawamura N, Ookawara T, Suzuki K, Konishi K, Mino M, Taniguchi N (1992) Increased glycated Cu, Zn-superoxide dismutase levels in erythrocytes of patients with insulin-dependent diabetis mellitus. J Clin Endocrinol Metab 74: 1352-1354. 
  • Kim YK, Kwon EH, Kim DH, Won DI, Shin S, Suh JS (2008) Susceptibility of oxidative stress on red blood cells exposed to gamma rays: hemorheological evaluation. Clin Hemorheol Microcirc 40: 315-324. 
  • Komorowska M, Krokosz A. Szweda-Lewandowska Z (2007) Radiation damage to human erythrocytes: Influence of the composition of medium. Rad Phys Chem 76: 1587-1593.
  • Kotake M, Shinohara R, Kato K, Hayakawa N, Hayashi R, Uchimura K, Makino M, Nagata M, Kakizawa H, Nakagawa H, Nagasaka A, Itoh M (1998) Reduction of activity, but no decrease in concentration, of erythrocyte Cu, Zn-superoxide dismutase by hyperglycaemia in diabetic patients. Diabet Med 15: 668-671. 
  • Köteles GJ (1982) Radiation effects on cell membranes. Radiat Environ Biophys 21: 1-18.
  • Krokosz A, Szweda-Lewandowska Z (2006) Induction of transient radioresistance in human erythrocytes. Radiat Phys Chem 75: 967-976.
  • Lang G, Marshall W (1966) Mössbauer effect in some hemoglobin compounds. Proc Phys Soc 87: 3-34.
  • Lee SW, Ducoff HS (1994) The effects of ionizing radiation on avian erythrocytes. Radiat Res 137: 104-110. 
  • Lowenthal GC, Airey PL (1997) Practical applications of radioactivity and nuclear reactions. Cambridge: Cambridge University Press.
  • Mahmoud SS, El-Sakhawy E, Abdel-Fatah ES, Kelany AM, Rizk RM (2011) Effects of acute low doses of Gamma-radiation on erythrocytes membrane. Radiat Environ Biophys 50: 189-198. 
  • Marnett L (1999) Lipid peroxidation-DNA damage by malon-dialdehyde. Mutat Res 424: 83-95. 
  • Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269: 9397-9400. 
  • Meyers RA (1995) Molecular biology and biotechnology: a comprehensive desk reference. pp 1084. Wiley-vch Verlag Gmbh.
  • Meyer C, Dostou J, Nadkarni V, Gerich J (1998) Effects of physiological hyperinsulinemia on systemic, renal and hepatic substrate metabolism. Am J Physiol 275: F915-F921. 
  • Mothersill C, Seymour C (2001) Radiation-induced bystander effects: past history and future directions. Radiat Res 155: 759-767. 
  • Murakami K, Kondo T, Ohtsuka Y, Fujiwara Y, Shimada M, Kawakami Y (1989) Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism 38: 753-758. 
  • Nagamatsu S, Inoue N, Murakawa S, Matsui H (1986) Evaluation of sodium and potassium pump activity and number in diabetic erythrocytes. Acta Endocrinol (Copenh) 111: 69-74. 
  • Nagasawa H, Little JB (1999) Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: evidence for a bystander effect. Radiat Res 152: 552-557. 
  • Oshtrakh MI, Semionkin VA (1991) Mössbauer effect study of gamma-irradiated human oxyhemoglobin. Radiat Environ Biophys 30: 33-44. 
  • Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22: 18-35. 
  • Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M (2006) In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 108: 791-801. 
  • Pelszynski MM, Moroff G, Luban NL, Taylor BJ, Quinones RR (1994) Effect of gamma irradiation of red blood cell units on T-cell inactivation as assessed by limiting dilution analysis: implications for preventing transfusion-associated graft-versus-host disease. Blood 83: 1683-1689. 
  • Petkau A (1971) Radiation effects with a model lipid membrane. Canadian J Chem 9: 1187-1196.
  • Petkau A (1972) Effect of 22 Na+ on a phospholipid membrane. Health Phys 22: 239-244. 
  • Preedy VR, Watson RR (2007) The encyclopedia of vitamin E. CABI Publishing.
  • Purohit SC, Bisby RH, Cundall RB (1980a) Structural modification of human erythrocyte membranes following gamma-irradiation. Int J Radiat Biol Relat Stud Phys Chem Med 38: 147-158. 
  • Purohit SC, Bisby RH, Cundall RB (1980b) Chemical damage in gamma irradiated human erythrocyte membranes. Int J Radiat Biol Relat Stud Phys Chem Med 38: 159-166. 
  • Radivoyevitch T, Kozubek S, Sachs RK (2002) The risk of chronic myeloid leukemia: can the dose-response curve be U-shaped? Radiat Res 157: 106-109. 
  • Rancourt DG, Ping J-Y (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instr Meth B 58: 85-87.
  • Resmi H, Pekcetin C, Güner G (2001) Erythrocyte membrane and cytoskeletal protein glycation and oxidation in short-term diabetic rabbits. Clin Exp Med 1: 187-193. 
  • Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65: 27-33 
  • Sangeetha P, Balu M, Haripriya D, Panneerselvam C (2005) Age associated changes in erythrocyte membrane surface charge: Modulatory role of grape seed proanthocyanidins. Exp Gerontol 40: 820-828. 
  • Selim NS, Desouky OS, Ali SM, Ibrahim IH, Ashry HA (2009) Effect of gamma radiation on some biophysical properties of red blood cells membrane. Romanian J Biophys 19: 171-185.
  • Selim NS, Desouky OS, El-Marakby SM, Ibrahim IH, Ashry HA (2009) Rheological properties of blood after whole body gamma-irradiation. Iran J Radiat Res 7: 11-17.
  • Shapiro B, Kollman G (1968) The nature of the membrane injury in irradiated human erythrocytes. Radiat Res 34: 335-346. 
  • Sies H, Stahl W (1995) Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 62: 1315S-1321S. 
  • Snyder LM, Fortier NL, Trainor J, Jacobs J, Leb L, Lubin D, Chiu D, Shohet S, Mohandas N (1985) Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J Clin Invest 76: 1971-1977. 
  • Sgouros G, Knox SJ, Joiner MC, Morgan WF, Kassis AI (2007) MIRD continuing education: bystander and low-dose-rate effects: are these relevant to radionuclide therapy? J Nucl Med 48: 1683-1691. 
  • Spector A, Wang GM, Wang RR, Garner WH, Moll H (1993) The prevention of cataract caused by oxidative stress in cultured rat lenses by H2O2 and photochemically induced cataract. Curr Eye Res 12: 163-179. 
  • Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA (2000) Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49: 1006-1015. 
  • Suzdalev JP (1988) Gamma resonance spectroscopy of proteins in model systems. pp 270. Moscow, Nauka (in Russian).
  • Szweda-Lewandowska Z, Puchała M, Osmulski PA, Rosin J (1989) Radiation-induced changes of structural and functional properties of human hemoglobin. II. Structural and functional characterization of irradiated deoxyhemoglobin. Radiat Environ Biophys 28: 47-58. 
  • Szweda-Lewandowska Z, Krokosz A, Gonciarz M, Zajeczkowska W, Puchala M (2003) Damage to human erythrocytes by radiation-generated HO• radicals: Molecular changes in erythrocyte membranes Free Radic Res 37: 1137-1143. 
  • Thornalley PJ, McLellan AC, Lo TW, Benn J, Sonksen PH (1996) Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci 91: 575-582. 
  • Treleaven J, Gennery A, Marsh J, Norfolk D, Page L, Parker A, Saran F, Thurston J, Webb D (2011) Guidelines on the use of irradiated blood components prepared by the British Committee for Standards in Haematology blood transfusion task force. Br J Haematol 152: 35-51. 
  • Trosko JE, Inoue T (1997) Oxidative stress, signal transduction and intercellular communication in radiation carcinogenesis. Stem Cells 15: 59-67. 
  • Tsun-Yee Chiu D, Liu TZ (1997) Free radical and oxidative damage in human blood cells. J Biomed Sci 4: 256-259. 
  • Uzel N, Sivas A, Uysal M, Oz H (1987) Erythrocyte lipid peroxidation and glutathione peroxidase activities in patients with diabetes mellitus. Horm Metab Res 19: 89-90. 
  • Venerando B, Fiorilli A, Croci G, Tringali C, Goi G, Mazzanti L, Curatola G, Segalini G, Massaccesi L, Lombardo A, Tettamanti G (2002) Acidic and neutral sialidase in the erythrocyte membrane of type 2 diabetic patients. Blood 99: 1064-1070. 
  • Waczulíková I, Šikurová L, Bryszewska M, Rékawiecka K, Čársky J, Uličná O (2000) Impaired erythrocyte transmembrane potential in diabetes mellitus and its possible improvement by resorcylidene aminoguanidine. Bioelectrochemistry Bioenerg 52: 251-256. 
  • Weiskopf RB, Schnapp S, Rouine-Rapp K, Bostrom A, Toy P (2005) Extracellular potassium concentrations in red blood cell suspensions after irradiation and washing. Transfusion 45: 1295-301 
  • Yoshida K, Hirokawa J, Tagami S, Kawakami Y, Urata Y, Kondo T (1995) Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia 38: 201-10. 
  • Zaider M, Bardash M, Fung A (1994) Molecular damage induced directly and indirectly by ionizing radiation in DNA. Int J Radiat Biol 66: 459-465. 
  • Zhou H, Suzuki M, Randers-Pehrson G, Vannais D, Chen G, Trosko JE, Waldren CA, Hei TK (2001) Radiation risk to low fluences of alpha particles may be greater than we thought. Proc Nat Acad Sci USA 98: 14410-14415. 
  • Zimmermann R, Schoetz AM, Frisch A, Hauck B, Weiss D, Strobel J, Eckstein R (2011) Influence of late irradiation on the in vitro RBC storage variables of leucoreduced RBCs in SAGM additive solution. Vox Sanguinis 100: 279-284. 
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.