EN
Bluetongue virus (BTV), the aetiological agent of bluetongue (BT), is a small (about 70 nm in diameter) icosahedral virus with a genome composed of ten linear segments of double-stranded RNA (dsRNA), which is packaged within an icosahedral nucleocapsid composed of seven structural proteins. The BTV genome evolves rapidly via genetic drift, reassortment of genome segments (genetic shift) and intragenic recombination. This evolution, and random fixation of quasispecies variants during transmission of BTV between susceptible animals and vectors appear to be the main mechanism leading to the observed genetic diversity amongst BTV field strains. The individual BTV gene segments evolve independently of one another by genetic drift in a host-specific fashion, generating quasispecies populations in both ruminant and insect hosts. Reassortment of BTV genes is responsible for genetic shift among strains of BTV, and has been demonstrated after infection of either the ruminant host or insect vector with different strains or serotypes of BTV. Intragenetic recombination, whereby mosaic genes are generated from the “splicing” together of homologous genes from different ancestral viral strains, has been demonstrated for BTV. The genetic variation of BTV is likely responsible for differences in the virulence and other phenotypic properties of individual field strains of the virus.