PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 15 |

Tytuł artykułu

Badania nad ograniczeniem populacji w glebie ważnego patogena cebuli - bakterii Burkholderia cepacia

Warianty tytułu

EN
Research on reducing the population in the soil of an onion valid pathogen - bacterium Burkholderia cepacia

Języki publikacji

PL

Abstrakty

PL
Celem badań było określenie, czy dodatek do gleby zakażonej bakterią Burkholderia cepacia makuchu rzepakowego, zmielonych nasion gorczycy sarepskiej lub antagonistycznego grzyba Trichoderma harzianum wpłynie na ograniczenie liczebności tego patogena. W glebie umieszczonej w kontenerach uprawiano cebulę odmiany Grabowska (Allium cepa L.). W trakcie uprawy analizowano populacje patogenicznej bakterii B. cepacia i innych mikroorganizmów glebowych oraz oceniano plon i zdrowotność cebuli. Doświadczenia prowadzono przez trzy sezony wegetacyjne. Stwierdzono, że liczba B. cepacia w glebie zmniejszała się wraz z upływem czasu we wszystkich kombinacjach. Istotny spadek liczebności B. cepacia zaobserwowano w kombinacjach z makuchem i gorczycą, szczególnie po upływie 3 i 9 miesięcy od zaaplikowania materiałów roślinnych. W tych kombinacjach stwierdzono także istotny wzrost ogólnej liczby bakterii, bakterii przetrwalnikujących i z grupy Pseudomonas, promieniowców oraz grzybów. Istotne różnice zaobserwowano zwłaszcza po upływie 1 miesiąca od dodania materiałów roślinnych. Wzrost plonu cebuli zaobserwowano po dodaniu makuchu rzepakowego zarówno w kombinacji zakażonej B. cepacia, jak i w kombinacji bez patogena. Dodatek zmielonych nasion gorczycy sarepskiej do gleby niezakażonej pozytywnie wpływał na plon cebuli, jednakże dodatek do gleby zakażonej znacznie obniżał plon.
EN
The aim of the study was to investigate the effect of addition of plant materials (rapeseed meals and milled seeds of mustard) and Trichoderma harzianum on a population of Burkholderia cepacia in soil. The onion cv. Grabowska (Allium cepa L.) was cultivated in container soil culture. During cultivation population of B. cepacia and other soil microorganisms were estimated. Also the health and yield of onion were studied. Experiments were conducted over three years. The number of B. cepacia decreased with time in all treatments. The lowest population of B. cepacia was observed in rapeseed meals and milled seeds of mustard treatments, especially after 3 and 9 months after the plant material application. In these treatments the increasing amount of total number of bacteria, spore bacteria and Pseudomonas bacteria, streptomyces and fungi was observed. After 1 month from the start of the experiment the differences were strongly expressed. The increased yield of onion was observed after addition of the rapeseed meal both in B. cepacia-infested and uninfested treatments. The addition of milled seeds of mustard to the uninfested soil had positive infl uence on the yield of onion, however addition of mustard to the infested soil caused decrease of the yield.

Wydawca

-

Rocznik

Numer

15

Opis fizyczny

s.38-48,bibliogr.

Twórcy

autor
  • Pracownia Mikrobiologii, Instytut Ogrodnictwa, ul.Konstytucji 3 Maja 1/3, 96-100 Skierniewice
autor
  • Pracownia Mikrobiologii, Instytut Ogrodnictwa, ul.Konstytucji 3 Maja 1/3, 96-100 Skierniewice

Bibliografia

  • Aires A., Mota V.R., Saavedra M.J., Monteiro A.A., Simoes M., Rosa E.A.S., Bennett R.N., 2009. Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J. Appl. Microbiol., 106: 2096-2105.
  • Alabouvette C., Olivain C., Steinberg Ch., 2006. Biological control of plant diseases: the European situation. Europ. J. Plant Pathol., 114: 329-341.
  • Aliye N., Fininsa C., Hiskias Y., 2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biol. Control, 47: 282-288.
  • Bakker M.G., Glover J.D., Mai J.G., Kinkel L.L., 2010. Plant community effects on the diversity and pathogen suppressive activity of soil streptomycetes. Appl. Soil Ecol., 46: 35-42.
  • Bjorkman M., Klingen I., Birch A.N.E., Bones A.M., Bruce T.J.A., Johansen T.J., Meadow R., Molmann J., Seljasen R., Smart L.E., Stewart D., 2011. Phytochemicals of Brassicaceae in plant protection and human health – Influences of climate, environment and agronomic practice. Phytochemistry, 72: 538-556.
  • Bohinc T., Ban S.G., Ban D., Trdan S., 2012.Glucosinolates in plant protection strategies: a review. Archiv. Biol. Sci., 64: 821-828.
  • Bonanomi G., Antignani V., Capodilupo M., Scala F., 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem., 42: 136-144.
  • Bonanomi G., Antignani V., Pane C., Scala F., 2007. Suppression of soilborne fungal diseases with organic amendments. J. Plant Pathol., 89: 311-324.
  • Borneman J., Becker J., 2007. Identifying microorganisms involved in specific pathogen suppression in soil. Ann. Rev. Phytopathol., 45: 153-172.
  • Brown P.D., Morra M.J., 1997. Control of soil-borne plants pests using glucosinolate-containing plants. Adv. Agron., 61: 167-231.
  • Cohen M.F., Yamasaki H., Mazzola M., 2005. Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol. Biochem., 37: 1215-1227.
  • Compant S., Nowak J., Coenye T., Clement C., Barka E.A., 2008. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev., 32: 607-626.
  • Cowan M.M., 1999. Plant products as microbial agents. Clinic. Microbiol. Rev., 12(4): 564-582.
  • Dhingra O.D., Sinclair J.B., 1995. Basic plant pathology methods. Lewis Publishers. Boca Raton, London, Tokyo.
  • Duffy B., Schouten A., Raaijmakers J.M., 2003. Pathogen selfdefense: Mechanisms to counteract microbial antagonism. Ann. Rev. Phytopathol., 41: 501-538.
  • Friberg H., Edel-Hermann V., Faivre C., Gautheron N., Fayolle L., Faloya V., Montfort F., Steinberg C., 2009. Cause and duration of mustard incorporation effects on soil-borne plant pathogenic fungi. Soil Biol. Biochem., 41: 2075-2084.
  • Fukui R., 2003. Suppression of soilborne plant pathogens through community evolution of soil microorganisms. Microb. Environ., 18: 1-9.
  • Garbeva P., van Veen J.A., van Elsas J.D., 2004. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann. Rev. Phytopathol., 42: 242-270.
  • Gould W.D., Hegedorn C., Bardinelli T.R., Zablotowicz R.M., 1985. New selective media for enumeration and recovery of fluorescent Pseudomonas from various habitats. Appl. Environ. Microbiol., 49: 28-32.
  • Hiddink G.A., van Bruggen A.H.C., Termorshuizen A.J., Raaijmakers J.M., Semenov A.V., 2005. Effect of organic management of soil on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens. Europ. J. Plant Pathol., 113: 417-435.
  • Horbowicz M., 2003. The occurrence, role and contents of glucosinolates in Brassica vegetables. Veget. Crops Res. Bull., 58: 23-40.
  • Janvier C., Villeneuve F., Alabouvette C., Edel-Hermann V., Mateille T., Steinberg Ch., 2007. Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol. Biochem., 39: 1-23.
  • Kaczmarek S., 2009. Wykorzystanie potencjału allelopatycznego roślin w wybranych uprawach rolniczych. Progr. Plant Protect./Post. Ochr. Rośl., 49: 1502-1511.
  • Kalembasa S., Adamiak E.A., 2011. Określenie składu chemicznego makuchu rzepakowego. Acta Agrophys., 15(2): 323-331.
  • Kawamoto S.O., Lorbeer J.W., 1974. Infectious of onions leaves by Pseudomonas cepacia. Phytopathology, 64: 1440- 1445.
  • Kowalska B., 2010. Characteristic of onion pathogenic bacteria and their control. Doctoral thesis. [in Polish with English summary]
  • Kowalska B., Smolińska U., 2008. The effect of selected plants materials and extracts on the development of bacterial diseases on onion. Veget. Crops Res. Bull., 68: 33-45.
  • Laegdsmand M., Gimsing A.L., Strobel B.W., Sorensen J.C., Jacobsen O.H., Hansen H.C.B., 2007. Leaching of isothiocyanates through intact soil following simulated biofumigation. Plant Soil, 291: 81-92.
  • Martin J.P., 1950. Use of acid, rose Bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci., 69: 215-232.
  • Mazzola M., 2004. Assessment and management of soil microbial community structure for disease suppression. Ann. Rev. Phytopathol., 42: 35-59.
  • Mercado-Blanco J., Bakker P.A.H.M., 2007. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie van Leeuwenhoek, 92: 367-389.
  • Morales-Rodriguez C., Picon-Toro J., Palo E.J., Garcia A., Rodriguez-Molina C., 2012. In vitro inhibition of mycelial growth of Phytophthora nicotianae Breda de Haan from different hosts by Brassicaceae species. Effect of the developmental stage of the biofumigant plants. Pest Manag. Sci., 68: 1317-1322.
  • Morra M.J., Kirkegaard J.A., 2002. Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol. Biochem., 34: 1683-1690.
  • Motisi N., Poggi S., filipe J.A.N., Lucas P., Dore T., Montfort F., Gilligan C.A., Bailey D.J., 2013. Epidemiological analysis of the effects of biofumigation for biological control of root rot in sugar beet. Plant Pathol., 62: 69-78.
  • Paaske K., 2009. Pesticide legislation and effect on European production. Onion Conference Proceeding, 11. Great Britain.
  • Postma J., Schilder M.T., Bloem J., van Leewen-Haagsma W.K. 2008. Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol. Biochem., 40: 2394-2406.
  • Rosa E.A.S., Rodrigues P.M.F., 1999. Towards a more sustainable agriculture system: the effect of glucosinolates on the control of soil-borne diseases. J. Hortic. Sci. Biotechnol., 74(6): 667-674.
  • Schrey S.D., Tarkka M.T., 2008. Friends and foes: stereptomyces as modulators of plant disease and symbiosis. Antonie van Leeuwenhoek, 94: 11-19.
  • Schwartz H.F., Mohan S.K., 2008. Compendium of onion and garlic diseases and pests. APS PRESS, St. Paul, Minnesota, USA.
  • Smolińska U., 2004. Badania nad możliwością wykorzystania roślin Brassicaceae, zawierających związki biologicznie czynne, w ograniczaniu Sclerotium cepivorum BERK. Rozpr. habil., Skierniewice.
  • Smolińska U., Kowalska B., 2006. The effectivity of plant extracts and antagonistic microorganisms on the growth inhibition of French bean pathogenic fungi. Veget. Crops Res. Bull., 64: 67-76.
  • Smolińska U., Kowalska B., 2008. The effect of organic amendments from Brassicaceae and Solanaceae plants and Trichoderma harzianum on the development of Verticillium dahliae Kleb. Veget. Crops Res. Bull., 69: 93-104.
  • Smolińska U., Kowalska B., Kowalczyk W., Horbowicz M., 2010. Effect of rape and mustard seed meals on Verticillium wilt of pepper. Veget. Crops Res. Bull., 73: 119-132.
  • Smolińska U., Kowalska B., Oskiera M. 2007. The effectivity of Trichoderma strains in the protection of cucumber and lettuce against Rhizoctonia solani. Veget. Crops Res. Bull., 67: 81-93.
  • Sobiczewski P., Schollenberger M., 2002. Bakteryjne choroby roślin ogrodniczych. PWRiL Warszawa. 156 [32].
  • Sołtys D., Dębska K., Bogatek R., Gniazdowska A., 2010. Autotoksyczność roślin jako przykład oddziaływań allelopatycznych. Kosmos, 3-4: 551-565.
  • Szczygłowska M., Piekarska A., Konieczka P., Namieśnik J., 2011. Use of brassica plants in the phytoremediation and biofumigation processes. Internation. J. Molecular Sci., 12: 7760-7771.
  • Thuerig B., Flieβbach A., Berger N., Fuchs J.G., Kraus N., Mahlberg N., Nietlispach B., Tamm L., 2009. Re-establishment of suppressiveness to soil- and air-borne diseases by re-inoculation of soil microbial communities. Soil Biol. Biochem., 41: 2153-2161.
  • Underhill E., 1980. Glucosinolates. W: Encyclopedia of Plant Physiology, Vol. 8. Secondary Plant Metabolities. Rosenthal, G.A. Janzen H., Academic Press, New York, ss. 493-511.
  • Utama I.M.S., Wills R.B.H., Ben-Yehoshua S., Kuek C., 2002. In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J. Agric. Food Chem., 50: 6371-6377.
  • Wu B.J., Thompson S.T., 1984. Selective medium for Pseudomonas cepacia containing 9-chloro-9 (4-diethylaminophenyl)- 10-phenylacridan and polymixin β sulfate. Appl. Environ. Microbiol., 48: 743-746.
  • Zanon M.J., Jorda C., 2008. Eradication of Clavibacter michiganensis subsp. michiganensis by incorporating fresh crop debris into soil: Preliminary evaluations under controlled conditions. Crop Protect., 27: 1511-1518.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e0cd9aa6-6f76-45ed-a887-6d50a0628e18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.