Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 09 | 2 |
Tytuł artykułu

Echolocation and the thoracic skeletons of bats: a comparative morphological study

Warianty tytułu
Języki publikacji
Using analyses of digital images of the thoracic skeletons of 16 species of bats (7 families) known to produce high intensity echolocation calls, we made qualitative and quantitative comparisons of the associations of thoracic skeletal features to echolocation behaviour and classification by family. The bats we examined showed significant differences in rib, sternal, manubrial and xiphoid morphology. Pteropodids (former Megachiroptera, non echolocating or, in the case of Rousettus aegyptiacus echolocating using orally-generated signals), were distinctly different from species of former Microchiroptera. Among former Microchiroptera, low duty cycle echolocators (Emballonuridae, most Mormoopidae, Vespertilionidae, and Molossidae) were generally more similar to one another than to high duty cycle echolocators (Hipposideridae and Rhinolophidae). Pteronotus parnellii, a high duty cycle echolocator, was more similar in thoracic morphology to other mormoopids than to other high duty cycle echolocators (hipposiderids and rhinolophids). Thoracic skeletal morphology suggests that laryngeal echolocation is associated with some modifications of the thoracic skeleton apparently beyond those related to flight.
Słowa kluczowe
Opis fizyczny
  • Department of Biology, University of Western Ontario, London, Canada N6A 5B7
  • Department of Biology, University of Western Ontario, London, Canada N6A 5B7
  • Department of Biological Sciences, California State University Sacramento, Sacramento, California 95819 6077, USA
  • 1. E. M. Barratt, R. Deaville, T. M. Burland, W. M. Bruford, G. Jones, P. Racey, and R. K. Wayne . 1997. DNA answers the call of pipistrelle bat species. Nature 387:138–139. Google Scholar
  • 2. D. M. Bramble and F. A. Jenkins . 1993. Mammalian locomotor-respiratory integration implications for diaphragmatic and pulmonary design. Science 262:235–240. Google Scholar
  • 3. M. Cappello and A. De Troyer . 2004. Role of rib cage elastance in the coupling between the abdominal muscles and the lung. Journal of Applied Physiology 97:85–90. Google Scholar
  • 4. G. N. Eick, D. S. Jacobs, and C. A. Mathee . 2005. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Molecular Biology and Evolution 22:1869–1886. Google Scholar
  • 5. M. B. Fenton, D. Audet, M. K. Obrist, and J. Rydell . 1995. Signal strength, timing and self-deafening: the evolution of echolocation in bats. Paleobiology 21:229–242. Google Scholar
  • 6. D. R. Griffin 1958. Listening in the dark Dover Publications, Inc. New York. xxvi + 413. pp. Google Scholar
  • 7. M. W. Holdereid, G. Jones, C. Korine, and M. B. Fenton . 2005. Echolocation call. Design and intensity in aerial hawking bat, Eptesicus bottae (Vespertilionidae). Journal of Experimental Biology 208:1321–1327. Google Scholar
  • 8. D. S. Jacobs, G. Bick, M. C. Schoeman, and C. A. Matthese . 2006. Cryptic species in an insectivorous bat, Scotophilus dinganii. Journal of Mammalogy 87:161–170. Google Scholar
  • 9. G. Jones and E. C. Teeling . 2006. The evolution of echolocation in bats. Trends in Ecology and Evolution 21:149–156. Google Scholar
  • 10. T. Kingston and S. J. Rossiter . 2004. Harmonic-hopping in Wallacea's bats. Nature 429:654–657. Google Scholar
  • 11. T. Kingston, M. C. Lara, G. Jones, Z. Akbar, T. H. Kunz, and C. J. Schneider . 2001. Acoustic divergence in two cryptic Hipposideros species: a role for social selection. Proceeding of the Royal Society of London 268B:1381–1386. Google Scholar
  • 12. M. Kossl and I. J. Russell . 1995. Basilar membrane resonance in the cochlea of the mustached bat. Proceedings of the National Academy of Science 92:276–279. Google Scholar
  • 13. I. M. Kovalyova 1997. Morphofunctional modification of the thorax and diaphragm in bats (Chiroptera). Journal of Morphology 232:280. Google Scholar
  • 14. W. C. Lancaster and J. R. Speakman . 2001. Variations in respiratory muscle activity during echolocation when stationary in three species of bat. Journal of Experimental Biology 204:4185–4197. Google Scholar
  • 15. W. C. Lancaster, O. W. Henson Jr., and A. W. Keating . 1995. Respiratory muscle activity in relation to vocalization in flying bats. Journal of Experimental Biology 198:175–191. Google Scholar
  • 16. G. Neuweiler 2000. Biology of bats Oxford University Press. Oxford. ix + 310. pp. Google Scholar
  • 17. H-U. Schnitzler 1973. Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A 82:79–92. Google Scholar
  • 18. B. Siemers and H-U. Schnitzler . 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661. Google Scholar
  • 19. N. B. Simmons 2005. An Eocene big bang for bats. Science 307:527–528. Google Scholar
  • 20. N. B. Simmons and J. H. Geisler . 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History 235:1–182. Google Scholar
  • 21. J. A. Simmons and R. A. Stein . 1980. Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation. Journal of Comparative Physiology A 135:61–84. Google Scholar
  • 22. J. R. Speakman, W. C. Lancaster, S. Ward, and K. Cole . 2004. Energy cost of echolocation in stationary insectivorous bats. Pp 361–365. in Echolocation in bats and dolphins J. A. Thomas, C. F. Moss, and M. Vater , editors. University of Chicago Press. Chicago. 604. pp. Google Scholar
  • 23. E. C. Teeling, M. S. Springer, O. Madsen, P. Bates, S. J. O'Brian, and W. J. Murphy . 2005. Molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584. Google Scholar
  • 24. T. A. Vaughan 1959. Functional morphology of three bats: Eumops, Myotis, Macrotus. University of Kansas Publications, Museum of Natural History 12:1–153. Google Scholar
  • 25. T. A. Vaughan 1970. The skeletal system. Pp 98–139. in Biology of bats Vol. I: W. A. Wimsatt , editor. Academic Press. New York. 406. pp. Google Scholar
rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.