Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 5 |
Tytuł artykułu

Effect of methylglyoxal bis-(guanylhydrazone) on polyamine and ethylene biosynthesis of apple fruit after harvest

Warianty tytułu
Języki publikacji
Polyamine and ethylene both play important roles in fruit ripening, whose biosynthetic pathways share a common substrate, S-adenosylmethionine (SAM). To unravel the interrelationship between polyamine and ethylene, their metabolism and expression of relevant genes were investigated in apple fruit (Malus domestica Borkh.) treated with methylglyoxal bis-(guanylhydrazone) (MGBG). The MGBG-treated fruit had higher ethylene production until 16 days after treatment (DAT) with preceding accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) than control fruit and then decreased to nearly the same level as control. Ethylene promotion at the early stage by MGBG was accompanied by increased expression of apple ACC synthase (Md-ACS1) and ACC oxidase (MdACO). The expression of apple SAM synthase (MdSAMS) in MGBG-treated fruit was slightly higher than that in control. On the other hand, significant changes in free polyamine titers were observed at some stages, but the changes did not show consistent trends. Based on these observations, possible relationship between polyamine and ethylene pathways was discussed.
Słowa kluczowe
Opis fizyczny
  • Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
  • National Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605, Japan
  • Mie University, Tsu, Mie 514-8507, Japan
  • Mie University, Tsu, Mie 514-8507, Japan
  • National Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605, Japan
  • University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
  • National Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605, Japan
  • University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
  • Apelbaum A, Burgoon AC, Anderson JD, Lieberman M, Ben-Arie R, Mattoo AK (1981) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol 68:453–456
  • Ban Y, Honda C, Bessho H, Pang XM, Moriguchi T (2007) Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase. J Exp Bot 58:1825–1834
  • Bhatnagar P, Minocha R, Minocha SC (2002) Transgenic manipulation of the metabolism of polyamines in poplar cells The regulation of putrescine catabolism. Plant Physiol 128:1455–1469
  • Biasi R, Bagni N, Costa G (1988) Endogenous polyamines in apple and their relationship to fruit set and fruit growth. Physiol Plant 73:201–205
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Bregoli AM, Scaramagli S, Costa G, Sabatini E, Ziosi V, Biondi S, Torrigiani P (2002) Peach (Prunus persica L.) fruit ripening: aminoethoxyvinylglycine (AVG) and exogenous polyamines affect ethylene emission and flesh firmness. Physiol Plant 114:472–481
  • Even-Chen Z, Mattoo AK, Goren R (1982) Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines shunts label from 3, 4-[¹⁴C]-methionine into spermidine in aged orange peel discs. Plant Physiol 69:385–388
  • He L, Nada K, Kasukabe Y, Tachibana S (2002) Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant Cell Physiol 43:196–206
  • Ke D, Romani RJ (1988) Effects of spermidine on ethylene production and the senescence of suspension-cultured pear fruit cells. Plant Physiol Biochem 26:109–116
  • Kumar A, Taylor MA, Mad Arif SA, Davies HV (1996) Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J 9:147–158
  • Kushad MM, Yelenosky G, Knight R (1988) Interrelationship of polyamine and ethylene biosynthesis during avocado fruit development and ripening. Plant Physiol 87:463–467
  • Lee MM, Lee SH, Park KY (1997) Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L.) flowers during senescence. J Plant Physiol 151:68–73
  • Liu JH, Honda C, Moriguchi T (2006a) Involvement of polyamine in floral and fruit development. Jpn Agric Res Q 40:51–58
  • Liu JH, Nada K, Pang XM, Honda C, Kitashiba H, Moriguchi T (2006b) Role of polyamines in peach fruit development and storage. Tree Physiol 26:791–798
  • Malik AU, Singh Z (2004) Endogenous free polyamines of mangos in relation to development and ripening. J Am Soc Hortic Sci 129:280–286
  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enchances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618
  • Pandey S, Ranada SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25:291–299
  • Pang XM, Nada K, Liu JH, Kitashiba H, Honda C, Yamashita H, Tatsuki M, Moriguchi T (2006) Interrelationship between polyamine and ethylene in 1-methylcyclopropene treated apple fruit after harvest. Physiol Plant 128:351–359
  • Roberts DR, Walker MA, Thompson JE, Dumbroff EB (1984) The effects of inhibitors of polyamine and ethylene biosynthesis on senescence, ethylene production and polyamine levels in cut carnation flowers. Plant Cell Physiol 25:315–322
  • Shen WY, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–440
  • Song J, Nada K, Tachibana S (2001) The early increase of S-adenosylmethionine decarboxylase activity is essential for the normal germination and tube growth in tomato (Lycopersicon esculentum Mill.) pollen. Plant Sci 161:507–515
  • Tassoni A, Watkins CB, Davies PJ (2006) Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. J Exp Bot 57:3313–3325
  • Theologis A (1992) One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell 70:181–184
  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12
  • Zhang Z, Honda C, Kita M, Hu C, Nakayama M, Moriguchi T (2003) Structure and expression of spermidine synthase genes in apple: two cDNAs are spatially and developmentally regulated through alternative splicing. Mol Gen Genomics 268:799–807
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.