PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 157 | 11 |

Tytuł artykułu

Grzyby ektomykoryzowe w obiegu węgla w ekosystemach leśnych

Treść / Zawartość

Warianty tytułu

EN
Ectomycorrhizal fungi and carbon dynamics in forest ecosystems

Języki publikacji

PL

Abstrakty

EN
In boreal and temperate forests fungi play a particularly important role, since most trees form a symbiotic relationship with many species of ectomycorrhizal (ECM) fungi, providing them with assimilates in exchange for minerals. Mycorrhiza is considered one of the most significant factors affecting functioning of forest ecosystems, and in particular the processes of carbon cycling and storage. ECM fungi are involved both directly through carbon accumulation in the mycelial system, and indirectly through their influence on tree biomass production and organic matter decomposition. The amount of carbon transferred to ECM fungi usually varies from 10 to 25 or even 50% of the host's net photosynthesis, thus they are a group of organisms that significantly affect carbon flow into the soil. Most of that carbon is built into the mycelial system and its structures (fungal parts of ECM roots, extramatrical hyphae and rhizomorphs, sporocarps, etc.). Carbon allocation to the underground part of trees, and thus to ECM roots, changes with stand age and stand development phase. The biomass of active ECM roots and mycelium usually reaches its maximum in young stands, in the canopy closure phase; frequently, this is also true for the standing biomass of fruit bodies. A large share of ECM sporocarps in the forest carbon budget and high levels of ECM vegetative mycelium respiration are considered to be among the main pathways for the release of CO2 from forest soil, indicating a significant role of ECM fungi in fast carbon flow via forest ecosystems. On the other hand, dead ECM fine roots and extramatrical mycelia are a very rich and important pool of sequestered carbon in the soil.

Wydawca

-

Czasopismo

Rocznik

Tom

157

Numer

11

Opis fizyczny

s.817-830,bibliogr.

Twórcy

autor
  • Katedra Algologii i Mykologii, Uniwersytet Łódzki, ul.Banacha 12/16, 90-237 Łódż
  • Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-035 Kórnik
  • Katedra Łowiectwa i Ochrony Lasu, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 71d, 60-625 Poznań

Bibliografia

  • Abuzinadah R. A., Read D. J. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytologist 103: 507−514.
  • Abuzinadah R. A., Read D. J. 1989. Carbon transfer associated with assimilation of organic nitrogen sources by silver birch Betula pendula Roth. Trees 3: 17−23.
  • Agerer R. 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycological Progress 5: 67−107.
  • Anderson I. C., Chambers S. M., Cairney J. W. G. 1998. Use of molecular methods to estimate the size and distribution of mycelial individuals of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycological Research 102: 295−300.
  • Andrews J. A., Harrison K. G., Matamala R., Schlesinger W. H. 1999. Separation of root respiration from total soil respiration using carbon−13 labeling during Free−Air Carbon Dioxide Enrichment (FACE). Soil Science Society of America Journal 63: 1429−1435.
  • Baath E., Nilsson L−O., Goransson H., Wallander H. 2004. Can the extent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil? Soil Biology and Biochemistry 36: 2105−2109.
  • Beiler K. J., Durall D. M., Simard S. W., Maxwell S. A., Kretzer A. M. 2010. Architecture of the wood−wide web: Rhizopogon spp. genets link multiple Douglas−fir cohorts. New Phytologist 185: 543−553.
  • Bending G. D., Read D. J. 1995. The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. The foraging behavior of ectomycorrhizal mycelium and the translocation of nutrients from exploited litter. New Phytologist 130: 401−409.
  • Benedict J. B. 2011. Sclerotia as indicators of mid−Holocene tree−limit altitude, Colorado Front Range, USA. The Holocene 21: 1021−1023.
  • Bevege D. I., Bowen G. D., Skinner M. F. 1975. Comparative carbohydrate physiology of ecto− and endomycorrhizas. W: Sanders F. E., Mosse B., Tinker P. B. [red.]. Endomycorhizas. Academic Press, New York. 149−174.
  • Bever J. D., Richardson S. C., Lawrence B. M., Holmes J., Watson M. 2009. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mycelium. Ecology Letters 12: 13−21.
  • Bhupinderpal S., Nordgren A., Lofvenius N. O., Högberg M. N., Mellander P. E., Högberg P. 2003. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell and Environment 26: 1287−1296.
  • Boddy L., Frankland J. C., van West P. [red.]. 2008. Ecology of Saprotrophic Basidiomycetes. British Mycological Society Symposia Series 28.
  • Bonet J., Fischer C., Collinas C. 2004. The relationship between forest age and aspect on the production of sporocarps of ectomycorrhizal fungi in Pinus sylvestris forest of the central Pyrenees. Forest Ecology and Management 203: 157−175.
  • Brundrett M., Malajczuk N., Mingquin G., Daping X., Snelling S., Dell B. 2005. Nursery inoculation of Eucalyptus seedlings in Western Australia and southern China using spores and mycelial inoculum of diverse ectomycorrhizal fungi from different climatic regions. Forest Ecology and Management 209: 193−205.
  • Bruns T. D. 1995. Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant and Soil 170: 63−73.
  • Bruns T. D., Bidartondo M. I., Taylor D. L. 2002. Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integrative and Comparative Biology 42: 352−359.
  • Cairney J. W. G. 2005. Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycological Research 109: 7−20.
  • Cairney J. W. G. 2012. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology and Biochemistry 47: 198−208.
  • Cairney J. W. G., Ashford A. E., Allaway W. G. 1989. Distribution of photosynthetically fixed carbon within root systems of Eucalyptus pilularis ectomycorrhizal with Pisolithus tinctorius. New Phytologist 112: 495−500.
  • Chen Y. L., Kang L. H., Malajczuk N., Dell B. 2006. Selecting ectomycorrhizal fungi for inoculating plantations in south China: effect of Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii, and P. radiata. Mycorrhiza 16: 251−259.
  • Cullings K., Courty P.−E. 2009. Saprotrophic capabilities as functional traits to study functional diversity and resilience of ectomycorrhizal community. Oecologia 161: 661−664.
  • Dahlberg A., Jonsson L., Nylund J. E. 1997. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an oldgrowth Norway spruce forest in south Sweden. Canadian Journal of Botany 75: 1323−1335.
  • Dahlberg A., Stenlid J. 1990. Population structure and dynamics in Suillus bovinus as indicated by spatial distribution of fungal clones. New Phytologist 115: 478−493.
  • Dighton J. 1995. Nutrient cycling in different terrestrial ecosystems in relation to fungi. Canadian Journal of Botany 73: 1349−1360.
  • Donnelly D. P., Boddy L., Leake J. R. 2004. Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza 14: 37−45.
  • Dosskey M. G., Linderman R. G., Boersma L. 1990. Carbon−sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas. New Phytologist 115: 269−274.
  • Downes G. M., Alexander I. J., Cairney J. W. G. 1992. A study of ageing of spruce [Picea sitchensis (Bong.) Carr.] ectomycorrhizas. I. Morphological and cellular changes in mycorrhizas formed by Tylospora fibrillosa (Burt.) Donk and Paxillus involutus (Batsch. ex Fr.) Fr. New Phytologist 122: 141−152.
  • Druebert C., Lang C., Valtanen K., Polle A. 2009. Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell and Environment 32: 992−1003.
  • Dunham S. M., Kretzer A., Pfrender M. E. 2003. Characterization of Pacific golden chanterelle (Cantharellus formosus) genet size using co−dominant microsatellite markers. Molecular Ecology 12: 1607−1618.
  • Durall D. M., Jones M. D., Tinker P. B. 1994. Allocation of 14C−carbon in ectomycorrhizal willow. New Phytologist 128: 109−114.
  • Fahey T. J., Tierney G. L., Fitzhugh R. D., Wilson G. F., Siccama T. G. 2005. Soil respiration and soil carbon balance in a northern hardwood forest ecosystem. Canadian Journal of Forest Research 35: 244−253.
  • Gadgil R. L., Gadgil P. D. 1971. Mycorrhiza and litter decomposition. Nature 233: 133.
  • Gardes M., Bruns T. D. 1996. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above− and below−ground views. Canadian Journal of Botany 74: 1572−1583.
  • Gaudinski J. B., Trumbore S. E., Davidson E. A., Cook A. C., Markewitz D., Richter D. D. 2001. The age of fine−root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129: 420−429.
  • Gaudinski J. B., Trumbore S. E., Davidson E. A., Zheng S. H. 2000. Soil carbon cycling in a temperate forest: radiocarbon−based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51: 33−69.
  • Göransson H., Wallander H., Ingerslev M., Rosengren U. 2006. Estimating the relative nutrient uptake from different soil depths in Quercus robur, Fagus sylvatica and Picea abies. Plant and Soil 286: 87−97.
  • Harley J. L., Smith S. E. 1983. Mycorrhizal Symbiosis. Academic Press, London.
  • Hasselquist N. J., Vargas R., Allen M. F. 2010. Using soil sensing technology to examine interactions and controls between ectomycorrhizal growth and environmental factors on soil CO2 dynamics. Plant and Soil 331: 17−29.
  • van der Heijden M. G. A., Bardgett R. D., van Straalen N. M. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296−310.
  • Heinemeyer A., Hartley I. P., Evans S. P., de la Fuente J. A. C., Ineson P. 2007. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Global Change Biology 13: 1786−1797.
  • Heinonsalo J., Hurme K.−R., Sen R. 2004. Recent 14C−labelled assimilate allocation to Scots pine seedling root and mycorrhizosphere compartments developed on reconstructed podzol humus, E− and B−mineral horizons. Plant and Soil 259: 111−121.
  • Hendricks J. J., Mitchel R. J., Kuehn K. A., Pecot S. D., Sims S. E. 2006. Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytologist 171: 179−186.
  • Hintikka V. 1988. On the macromycete flora in oligotrophic pine forests of different ages in South Finland. Acta Botanica Fennica 136: 89−94.
  • Hobbie E. A. 2006. Carbon allocation to ectomycorrhizal fungi correlates with total belowground allocation in culture studies. Ecology 87: 563−569.
  • Hobbie J. E., Hobbie E. A. 2006. N−15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87: 816−822.
  • Hobbie E. A., Tingey D. T., Rygiewicz P. T., Johnson M. G., Olszyk D. M. 2002. Contributions of current year photosynthate to fine roots estimated using a C−13−depleted CO2 source. Plant and Soil 247: 233−242.
  • Högberg M. N., Högberg P. 2002. Extramatrical ectomycorrhizal mycelium contributes one−third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist 154: 791−795.
  • Högberg P., Nordgren A., Buchmann N., Taylor A. F. S., Ekblad A., Högberg M. N., Nyberg G., Ottoson−Lovenius M., Read D. J. 2001. Large−scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789−792.
  • Högberg P., Read D. J. 2006. Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution 21: 544−548.
  • Horton T. R., Bruns T. D. 1998. Multiple−host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytologist 139: 331−339.
  • Ingham E. R., Griffiths R. P., Cromack K., Entry J. A. 1991. Comparison of direct vs. fumigation incubation microbial biomass estimates from ectomycorrhizal mat and non−mat soils. Soil Biology and Biochemistry 23: 465−471.
  • Jagodziński A. M., Kałucka I. 2008. Age−related changes in leaf area index of young Scots pine stands. Dendrobiology 59: 57−65.
  • Jagodziński A. M., Kałucka I. 2010. Fine roots biomass and morphology in a chronosequence of young Pinus sylvestris stands growing on a reclaimed lignite mine spoil heap. Dendrobiology 64: 19−30.
  • Jagodziński A. M., Kałucka I. 2011. Fine root biomass and morphology in an age−sequence of post−agricultural Pinus sylvestris L. stands. Dendrobiology 66: 71−84.
  • Jansen A. E. 1991. The mycorrhizal status of Douglas fir in the Netherlands: its relations with stand age, regional factors, atmospheric pollutants and tree vitality. Agriculture, Ecosystems & Environment 35: 191−208.
  • Johansson E. M., Fransson P. M. A., Finlay R. D., van Hees P. A. W. 2008. Quantitative analysis of root and ectomycorrhizal exudates as a response to Pb, Cd and As stress. Plant and Soil 313: 39−54.
  • Johansson E. M., Fransson P. M. A., Finlay R. D., van Hees P. A. W. 2009. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2. Soil Biology and Biochemistry 41: 1111−1116.
  • Johnson D., Krsek M., Wellington E. M. H., Stott A. W., Cole L., Bardgett R. D., Read D. J., Leake J. R. 2005. Soil invertebrates disrupt carbon flow through fungal networks. Science 309: 1047.
  • Jones D. L., Hodge A., Kuzyakov Y. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163: 459−480.
  • Jones M. D., Durall D. M., Tinker P. B. 1991. Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytologist 119: 99−106.
  • Jones M. D., Durall D. M., Tinker P. B. 1998. Comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytologist 140: 125−134.
  • Kałucka I. 2009. Macrofungi in the secondary succession on the abandoned farmland near the Białowieża old−growth forest. Monographiae Botanicae 99: 155.
  • Karén O., Nylund J.−E. 1997. Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in South West Sweden. Canadian Journal of Botany 75: 1628−1643.
  • King J. S., Giardina C. P., Pregitzer K. S., Friend A. L. 2007. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Canadian Journal of Forest Research 37: 93−102.
  • Kjller R. 2006. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiology and Ecology 58: 214−224.
  • Klironomos J. N., Hart M. 2001. Animal nitrogen swap for plant carbon. Nature 410: 651−652.
  • Koide R. T., Fernandez C. W., Peoples M. S. 2011. Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition? New Phytologist 191: 508−514.
  • Koide R. T., Wu T. 2003. Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation. New Phytologist 158: 401−407.
  • Lamhamedi M. S., Godbout C., Fortin J. A. 1994. Dependence of Laccaria bicolor basidiome development on current photosynthesis of Pinus strobus seedlings. Canadian Journal of Forest Research 24: 1797−1804.
  • Langley J. A., Chapman S. K., Hungate B. A. 2006. Ectomycorrhizal colonization slows root decomposition: the post−mortem fungal legacy. Ecology Letters 9: 955−959.
  • Langley J. A., Hungate B. A. 2003. Mycorrhizal controls on belowground litter quality. Ecology 84: 2302−2312.
  • Langlois C. G., Fortin J. A. 1984. Seasonal variations in the uptake of [32P]phosphate ions by excised ectomycorrhizae and lateral roots of Abies balsamea. Canadian Journal of Forest Research 14: 412−415.
  • Leake J. R. 2007. Mycorrhizas and the terrestrial carbon cycle: roles in global carbon sequestration and plant community composition. W: Gadd G. M., Watkinson S. C., Dyer P. S. [red.]. Fungi in the Environment. Cambridge University Press, New York. 161−184.
  • Leake J. R., Donnelly D. P., Boddy L. 2002. Interactions between ectomycorrhizal fungi and saprotrophic fungi. W: M. G. A. van der Heijden, I. R. Sanders [red.]. Mycorrhizal Ecology. Ecological Studies 157: 345−372.
  • Leake J. R., Johnson D., Donnelly D., Muckle G., Boddy L., Read D. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany 82: 1016−1045.
  • Lindahl B. D., Ihrmark K., Boberg J., Trumbore S. E., Högberg P., Stenlid J., Finlay R. D. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist 173: 611−620.
  • Majdi H., Truus L., Johansson U., Nylund J.−E., Wallander H. 2008. Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. Forest Ecology and Management 255: 2109−2117.
  • Marjanovic Z., Uehlein N., Kaldenhoff R., Zwiazek J. J., Weiss M., Hampp R., Nehls U. 2005a. Aquaporins in poplar: what a difference a symbiont makes! Planta 222: 258−268.
  • Marjanovic Z., Uwe N., Hampp R. 2005b. Mycorrhiza formation enhances adaptive response of hybrid poplar to drought. Biophysics from molecules to brain: in memory of Radoslav K. Andjus, Book Series: Annals of the New York Academy of Sciences 1048: 496−499.
  • Matamala R., Gonzales−Meler M. A., Jastrow J. D., Norby R. J., Schlesinger W. H. 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302: 1385−1387.
  • Molina R., Massicote H., Trappe J. M. 1992. Specificity phenomena in mycorrhizal symbiosis: community ecological consequences and practical application. W: Allen M. F. [red.]. Mycorrhizal functioning. Chapman and Hall, New York. 357−423.
  • Nara K., Nakaya H., Hogetsu T. 2003. Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytologist 158: 193−206.
  • Nehls U., Göhringer F., Wittulsky S., Dietz S. 2010. Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biology 12: 292−301.
  • Nilsson L. O., Wallander H. 2003. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytologist 158: 409−416.
  • North M., Trappe J., Frankin J. 1997. Standing crop and animal consumption of fungal sporocarps in Pacific Northwest forests. Ecology 78: 1543−1554.
  • Oliveira R. S., Franco A. R., Castro P. M. L. 2012. Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecological Engineering 43: 95−103.
  • Orwin K. H., Kirschbaum M. U. F., St John M. G., Dickie I. A. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model−based assessment. Ecology Letters 14: 493−502.
  • Perez−Moreno J., Read D. J. 2000. Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist 145: 301−309.
  • Pollierer M. M., Langel R., Körner C., Maraun M., Scheu S. 2007. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecology Letters 10: 729−736.
  • Pritchard S. G., Strand A. E., McCormack M. L., Davis M. A., Oren R. 2008. Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of free−air−CO2−enrichment. Global Change Biology 14: 1−13.
  • Quoreshi A. M., Piché Y., Khasa D. P. 2008. Field performance of conifer and hardwood species 5 years after nursery inoculation in the Canadian Prairie Provinces. New Forests 35: 235−253.
  • Read D. J. 1991. Mycorrhizas in ecosystems. Experimentia 47: 376−391.
  • Read D. J., Leake J. R., Perez−Moreno J. 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany 82: 1243−1263.
  • Reid C. P. P., Kidd F. A., Ekwebelam S. A. 1983. Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant and Soil 71: 415−432.
  • Rinaldi A. C., Comandini O., Kuyper T. W. 2008. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Diversity 33: 1−45.
  • Rincón A., Felipe M. R., Fernández−Pascual M. 2007. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18: 23−32.
  • Rosling A., Landahl B. D., Finlay R. D. 2004. Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytologist 162: 795−802.
  • Rygiewicz P. T., Anderson C. P. 1994. Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369: 58−60.
  • Sawyer N. A., Chambers S. M., Cairney J. W. G. 1999. Molecular investigation of genet distribution and genetic variation of Cortinarius rotundisporus. New Phytologist 142: 561−568.
  • Scott A. C., Pinter N., Collinson M. E., Hardiman M., Anderson R. S., Brain A. P. R., Smith S. Y., Marone F., Stampanoni M. 2010. Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas ‘impact layer’. Geophysical Research Letters 37, L14302.
  • Selosse M.−A., Rousset F. 2011. The plant−fungal marketplace. Science 333: 828−829.
  • Simard S. W., Jones M. D., Durall D. M. 2002. Carbon and nutrient fluxes within and between mycorrhizal plants. W: van der Heijden M. G. A., Sanders I. R. [red.]. Mycorrhizal Ecology. Ecological Studies 157: 33−74.
  • Sims S. E., Hendricks J. J., Mitchell R. J., Kuehn K. A., Pecot S. D. 2007. Nitrogen decreases and precipitation increases ectomycorrhizal extrametrical mycelia production in a longleaf pine forest. Mycorrhiza 17: 299−309.
  • Smith S. E., Read D. J. 2008. Mycorrhizal Symbiosis. 3rd ed. Academic Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo.
  • Söderström B. 1979. Seasonal fluctuations of active fungal biomass in the horizons of a podzolized pine forest soil in Central Sweden. Soil Biology and Biochemistry 11: 149−154.
  • Staddon P. L., Heinemeyer A., Fitter A. H. 2002. Mycorrhizal and global environmental change: research at different scales. Plant and Soil 244: 253−261.
  • Stober C., George E., Persson H. 2000. Root growth and response to nitrogen. W: Schulze E. D. [red.]. Carbon and nitrogen cycling in European forest ecosystem. Berlin, Germany, Springer−Verlag. 92−121.
  • Talbot J. M., Allison S. D., Treseder K. K. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology 22: 955−963.
  • Tanesaka E., Masuda H., Kinugawa K. 1993. Wood degrading ability of basidiomycetes that are wood decomposers, litter decomposers, or mycorrhizal symbionts. Mycologia 85: 347−354.
  • Taylor A. F. S., Alexander I. 2005. The ectomycorrhizal symbiosis: life in the real world. Mycologist 19: 102−112.
  • Teramoto M., Wu B., Hogetsu T. 2012. Transfer of 14C−photosynthate to the sporocarp of an ectomycorrhizal fungus Laccaria amethystina. Mycorrhiza 22: 219−225.
  • Teste F. P., Simard S. W., Durall D. M., Guy R. D., Berch S. M. 2010. Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. Journal of Ecology 98: 429−439.
  • Treseder K. K., Allen M. F. 2000. Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytologist 147: 189−200.
  • Treseder K. K., Torn M. S., Masiello C. A. 2006. An ecosystem−scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biology and Biochemistry 38: 1077−1082.
  • de la Varga H., Águeda B., Martínez−Peńa F., Parladé J., Pera J. 2012. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22: 59−68.
  • Vogt K. A., Bloomfield J., Ammirati J. F., Ammirati S. R. 1992. Sporocarp production by basidiomycetes, with emphasis on forest ecosystems. W: Carroll G. C., Wicklow D. T. [red.]. The fungal community – its organization and role in the ecosystem. Marcel Dekker, New York, Basel, Hong Kong. 563−581.
  • Vogt K. A., Grier C. C., Meier C. E., Edmonds R. L. 1982. Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63: 370−380.
  • Wallander H., Ekblad A., Bergh J. 2011. Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. Forest Ecology and Management 262: 999−1007.
  • Wallander H., Göransson H., Rosengren U. 2004. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139: 89−97.
  • Wallander H., Johansson L., Pallon J. 2002. PIXE analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soil. FEMS Microbiology Ecology 39: 147−156.
  • Wallander H., Johansson U., Sterkenburg E., Brandström Durling M., Lindahl B. D. 2010. Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytologist 187: 1124−1134.
  • Wallander H., Nilsson L. A., Hagerberg D., Baath E. 2001. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist 151: 753−760.
  • Watanabe M., Sato H., Matsuzaki H., Kobayashi T., Sakagami N., Maejima Y., Ohta H., Fujitake N., Hiradate S. 2007. 14C ages and 13C of sclerotium grains found in forest soils. Soil Science and Plant Nutrition 53: 125−131.
  • Wright D. P., Scholes J. D., Read D. J., Rolfe S. A. 2000. Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant Cell and Environment 23: 39−49.
  • Wu B., Nara K., Hogetsu T. 2001. Can 14C−labelled photosynthesis products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytologist 149: 137−146.
  • Wu B., Nara K., Hogetsu T. 2002. Spatiotemporal transfer of carbon−14−labelled photosynthate from ectomycorrhizal Pinus densiflora seedlings to extraradical mycelia. Mycorrhiza 12: 83−88.
  • Wu T. H., Sharda J. N., Koide R. T. 2003. Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein−tannin complex as an N source by red pine (Pinus resinosa). New Phytologist 159: 131−139.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e001da83-c607-4055-b3d6-91cff146985b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.