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Summary. In lots of flat mechanisms the leading element
is a crank, which is connected by a hinge to the driven
member. The junction of these units, i.e. the crank, makes
a circumference when rotated. The paper suggests to
place the vertex of the Frenet trihedron in the junction,
direct the principal unit normal vector to the
circumference center, combine the unit tangent vector
with the crank speed vector, that is, position it as a
tangent to the circumference. When rotating the crank, the
trihedron will also be rotated, and its principal unit normal
vector will all the time coincide with the crank. Thus, the
moving trihedron will accompany the circumference — its
crank trajectory and the speed of its motion in a
circumference will depend on the angular velocity of the
crank rotation.

While rotating the crank, the Frenet trihedron will rotate
as well, with the driven member in the form of a straight
line segment passing across the vertex of the trihedron,
and forming a certain angle with the unit tangent vector.
The variation law of this angle will depend on the design
and purpose of the mechanism. In order to get the
kinematic characteristics of the driven member (its
position depending on the angle of crank rotation,
trajectory, velocity and acceleration of the random point),
it is necessary to know the variation law of the angle of
rotation of the driven member in the system of the moving
trihedron in the function of the guide curve's arc length —
the hinge motion trajectory.

The idea of this research lies in determining the kinematic
characteristics of the complex motion of the point, when
the latter performs relative motion in the moving
coordinate system, and the system itself moves at a
certain law towards the fixed system. If consider the
convected trihedron of the curve as the moving coordinate
system, than the law of the trihedron motion becomes
known towards a fixed system. Thus, the rotation of the
driven member around the vertex of the trihedron and
simultaneous movement together with it determine the
relative motion of the driven member towards the fixed
coordinate system.

The position of the member is in projections on the unit
vectors of the trihedron, and is immediately converted to
the axis of the fixed system. The absolute trajectory of the
member point movement is found in the same way, which
in turn allows to define its velocity and acceleration. The
resulting dependencies are common to the mechanisms'
driven members, which are articulated by a hinge with a

crank. For the specific mechanism, the law of rotation of
the driven member in the moving trihedron system is the
only thing to be known. The article uses examples of
finding this law for certain mechanisms. It provides not
only the charts of changes in velocity and acceleration of
the individual points of the driven member, but also the
direction along the member point's trajectory as a vector
of the module, proportional to their size. This distribution
of velocities and accelerations along the point movement
trajectory may be performed with any density.

Key words: planar mechanism, crank, the driven
member, Frenet trihedron, the relative motion of the
point, trajectory, velocity, acceleration.

INTRODUCTION

The kinematic analysis of the planar mechanisms
involves finding the positions of its members, individual
points' trajectories, their velocities and accelerations. For
a long time these calculations were carried out by graphic
and graphoanalytical methods, including graphical
differentiation of functions in the form of a curve, and
graphical integration. The computer technologies'
emergence allowed us to work at a new level, applying
the analytical apparatus.

As one of the possible approaches, in this article it is
proposed to apply two coordinate systems: a moving
convected trihedron of a circumference (trajectory of the
crank ending's movement), and a fixed coordinate system.
The angle of the trihedron rotation with respect to the
fixed coordinate system is known: it is equal to the angle
of the crank rotation. The position of the vertex of a
trihedron in a fixed system is also known. Thus, it
becomes possible to investigate the motion of the driven
member, one end of which coincides with the vertex of
the trihedron, in the trihedron system itself. In the future,
the resulting kinematic characteristics are recalculated in
projection on the axes of the fixed coordinate system.

THE ANALYSIS OF RECENT RESEARCHES
AND PUBLICATIONS

The study of trajectory curves of the mechanisms'
member points’ motion is of great importance in problems
of synthesizing mechanisms. These are the tasks of the
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mechanisms' formation, which could reproduce the
predefined curves. A group of such problems was
resolved by academician P. L. Chebyshev, who applied
the method of best function approximation, provided that
the rod curve is a symmetric curve [1]. Some works on
applied geometry are devoted to this topic [2-4]. A
monograph [5] is devoted to finding a set of trajectory
curves formed with the help of planetary mechanisms.
The kinematics of the segment motion in the plane under
the given conditions was considered in [6]. The use of the
Frenet trihedron to determine the positions of the plane
mechanism members is shown in [7]. The fundamental
monographs [8, 9] are devoted to the study of the
complex material point motion on the technological
material particles' example.

The works about the particle moving along a rough
surface are devoted to finding the moving point trajectory.
The movement of soil particles along the plow's blade is
considered in the monograph [10].

The simplest motion of a particle along an inclined
plane is considered in [11, 12].

Finding the trajectory of a particle moving along a
cylindrical surface under the influence of backup forces is
depicted in [13].

A separate group is formed by the articles that target
the particle moving along a rough surface under the
influence of gravity, that is, on so-called gravitational
surfaces [14-16].

A complex motion of a particle along an oscillating
plane was investigated in [17, 18]. In [19], the relative
motion of a particle along an internal rough surface of a
rotational cone with a vertical axis of rotation is
considered.

OBJECTIVE

The purpose of the research is to find the positions of
the planar mechanism's driven member, to determine the
trajectories, velocities and accelerations of its individual
points.

THE MAIN RESULTS OF THE RESEARCH

When a trihedron moves along a plane curve, it
rotates and makes an angle a at the current point with
respect to the fixed coordinate system (Fig 1, a).

Its value depends on the curvature of the k curve.

Curvature is a variable and is given by the natural
equation k=Kk(s), where s is the arc length of the curve.
The angular size is determined by integrating the

expression ¢ = j kds.

For a circumference with a radius r the curvature is
the reciprocal of the radius k=1/r — const, and the angle
will equal a=ks.

For many mechanisms, the leading member is the
crank OA, the point A of which circumscribes a circle
(Fig. 1, b). In this case, the principal unit normal vector of
the trihedron n will coincide with the crank OA as it

rotates, the unit vector  will be tangent to the circle, and
the crank swing angle y will equal y=ks.

When the crank rotates at a constant angular velocity
o, its point A, which is the vertex of the trihedron, will
move with a constant velocity V=wr=w/k.

The same point is the beginning of the driven
member p, which forms an angle ¢ with the unit vector

7 , and an angle y with the Ox axis (Fig.1, b).

y

b)
Fig. 1. Graphic illustrations to the two-link planar
mechanism scheme:
a) the position of the AB member in the system of
the convected trihedron of the curve,
b) member p in the trihedron circular system of the
the trajectory of the crank OA's point A.

There is a relationship between w, ¢, and y angles,
with which one can find the angle ¢:

@ =90° —(y +ks). @

The angle change dependency y = y (s) is determined
for each specific mechanism.

In [20], the relative motion of a point in the system of
the convected trihedron of the curve, given by the natural
equation k=Kk(s), is considered. The coordinates of the
point B (Fig. 1, a) can be predefined by the projections pp,
and p, or by the angle ¢ and the distance p. Taking into
account the fact that our guide curve is a circumference
and k=const, the position of point B in the fixed system
will be written as [20]:
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Xg = pcos(p +ks)+ 1sin(ks),
K 2)

Ys = psin(p+ ks)—%cos(ks).

In [20], there are certain expressions for determining
velocity and acceleration of the point B in the projections
onto the trihedron unit vectors, when both the quantities p
and ¢ are variables and dependent on the guide curve's arc
length s. In our case, the distance p will be a constant
value, indicating at what distance from the hinge A the
given member point is located. In this connection, the
formulas will be simplified. Expressions for the velocity
V in the projections onto the trihedron unit vectors are
written as:

V. == plk+ @)sing]
®)
w
Vv, =?p(k +¢")cos .

The acceleration projections W look as follows [21]:

a)z "ai n2
W, :—F[pgo sing+ p(k +¢) COS(p],
(4)

2
@ " N2
W, =F[p§o COS(p—p(k+(p)ZSIn(0+k].

The values of both the wvelocity (3) and the
acceleration (4) are found as the square root of the sum of
the components' squares, that is, as a vector sum. If it is
necessary to know the direction of the velocity or
acceleration vector, then it is necessary to switch from the
projections (3) and (4) to the projections on the axis of the
fixed system, taking into account the known angle
between them a=ks.

Let us consider some specific examples. Take the de-
axial crank-slider mechanism (Fig. 2).

5,

0N\
r /’ _
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Fig. 2. The scheme of the crank-slider mechanism

Let us find the kinematic characteristics of the
different points of the connecting rod L. To know the
angle change dependency in the angle ¢ (1), it is
necessary to find the angle change dependency y=y(s). To
do this, let us use the fact that the ordinate of the point A —

AB=L — is common for both the crank OA and the
connecting rod. For the point 4 — the end of the crank OA,
let us write:

Y, = rsiny/:%sin(ks). (5)

For the point 4 — the end of the connecting rod AB=L
let us write:

Y, =Lsiny—e. ©

By equating the expressions (5) and (6) and solving
for the angle y, we get:

ek +cos(ks)

= —arcsin
4 Lk

U]

According to (1), the expression for the angle ¢ takes
the following form:

ek +cos(ks)

8
T ®)

@ =90° —ks+arcsin

To find the velocity and acceleration of a connecting
rod's random point, it is necessary to have the first and the
second derivatives of the expression (8). The first
derivative looks as:

o = k cos(ks) B
J12k? — ek +sin(ks) )’

©)

The second derivative is obtained by differentiating
the expression (9):

. 2k*(1+e’k? — L°k? )sin(ks)
0" = o
2[L7k? — (ek + sin(ks) ]
ek*(3—cos(2ks))
2[L2Kk? — (ek +sin(ks) ]

The expressions (8), (9) and (10) allow to find all the
kinematic characteristics of any point of the connecting
rod L for a given distance p from the point 4.

In Fig. 3, the 4B=L connecting rod's positions are
constructed, with a defined cranking rotation density OA
with an angle increment by the amount of k4s within the
limits of its incomplete turn.

The trajectory of the connecting rod's starting point
(point A) was determined by formulas (2) for p=0. The
trajectory of the opposite point B was at p=AB=L.

The connection of these points by a straight line
segment, for a certain value of the parameter s, positions
the connecting rod as a straight line segment.

(10)
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Above the positions of the connecting rod AB, the
trajectories of its individual points are constructed as well
in Fig. 3, according to formulas (2).

When p=0, we get a circumference — the hinge
movement trajectory.

When p=AB=L, we get a straight line — the slider
movement trajectory (point B).

This proves the reliability of the obtained results.

Fig. 3 shows the trajectory of the point A constructed
at p=0, as well as the trajectory of the points: B — for
p=AB=4m, C for p=-4m, D for p=L/2=2m. Curvature
k=05 m? e=Im.

S I T - 4 e ]

s 4 2 0 2 1 6
Fig. 3. One-parameter set of positions of the connecting
rod and the trajectory of its individual points

Let us consider the construction of the connecting rod
points' velocity. This will be done in a way that the
direction and the value of the velocity along the point
motion trajectory can clearly be seen. To do this, let us
proceed from the velocity projections on the trihedron's
unit vectors (3) to the projections on the fixed coordinate
system's axes, rotating them by the angle a=ks:

V, =V._ cos(ks)-V, sin(ks),

V, =V, sin(ks)+V, cos(ks). D

Depending on the connecting rod's position (variable
s), the coordinates of a certain point (for example, the
point C at p=-4) are found from formulas (2). It is
necessary to add the obtained vector (11), previously
multiplied by the scale factor m, to the coordinates of this
point. The end of the velocity vector coordinates are
found:

Xy =Xc +mV,,
12
yV:yB+mVy' ( )

By connecting the point with the coordinates xc and
yc on the trajectory with the coordinates of the end of the
vector Xy and yy by a segment, we obtain the velocity
vector at a given point of the trajectory.

By increasing the variable s by some value 4s, we
can construct vectors along the trajectory with the
required density. In Fig. 4, the velocity vectors for the
points C and D are plotted.

However, the visibility deteriorates in the sections of
the trajectory close to the straight line, and totally
disappears on the straight sections (for instance, for the
trajectory of the point B).

The graph shows that the velocity of the point A is
constant, and the velocity of the point B at a certain
moment equals zero (in the extreme positions of the
slider).

In the same sequence, we construct acceleration
vectors using the expressions (4). Fig. 6 shows the visual
distribution of the acceleration vectors along the A, C and
D points' trajectory, and Fig. 7 — their value change
graphs.
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-4 [ L i x '
-5 0 5
Fig. 4. Distribution of the velocity vectors along the
trajectories of the points C and D

In such case, it is possible to construct a graph of the
velocity value change. In Fig. 5 such graph is constructed,
covering the four points of the connecting rod, which are
indicated in Fig. 3.
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Fig. 5. A graph of the velocity value change for the
connecting rod's points

To enable the mechanism work, the necessary
relationships between the design parameters of the
mechanism must be observed. This follows from the
expression (7), in which the fraction in its absolute value
should not exceed the unity. Fig. 8 shows some positions
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of the connecting rod and the individual points' trajectory
for the following boundary values of the design
parameters: k=0,5 m™, e=2 m, L=4 m. In the extreme
position of the slider, the connecting rod coincides with
the crank along the vertical line.

y

L L L L x 1
-6 -4 -2 0 2 4
Fig. 6. Distribution of the acceleration vectors along the
A, C and D points' trajectories.
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Fig. 7. A graph of the acceleration value change for the

connecting rod's points

-6 -4 -2 0 2 4 6
Fig. 8. One-parameter set of positions of the connecting
rod and the trajectory of its individual points

In Fig. 9, the acceleration vectors are constructed
along the A, C and D points' trajectories. With the
analytical expressions for constructing velocity and
acceleration vectors, it is very simple and quick to obtain
their visual distribution along the trajectories, when the
design parameters and the location of the point on the
connecting rod change.
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Fig. 9. Distribution of the acceleration vectors along the
trajectories of the points A, C and D

Another mechanism with the boundary values of the
design parameters: k=0,5 m™, e=/ m, L=3 m is shown in
Fig. 10. It also demonstrates some of the connecting rod
positions and points A, B, C and D trajectories. As in the
previous case, in slider extreme position the connecting
rod coincides with the crank along the vertical line.

A

-5 0 5
Fig. 10. One-parameter set of positions of the connecting
rod and the trajectory of its individual points

In Fig. 11, the A, C and D points' trajectories are
constructed with acceleration vectors for the mechanism
(10).

One can judge about the point's velocity by the
density of the vectors' arrangement along the trajectory.

For instance, for the point C at the top of the
trajectory, the density of the vectors is lower, so the
point's velocity will be greater.
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2t

6 -4 -2 0 2
Fig. 11. Distribution of the acceleration vectors along the
trajectories of the points 4, C and D

Let us consider one more mechanism — a crank-
rocker with points A, C, D on the rocker arm (Fig. 12). Its
characteristic feature is that point A on the rocker arm
moves along the circumference, and point B is fixed. This
is ensured by sliding the rocker in a rocking or rotating
stone, fixed at point B. To find the dependency of the
angle ¢ (1) changing, it is necessary to know the
expression for the angle y. The guide vector of the rocker
arm is found as a segment connecting point A with the

coordinates { cos(ks)/k , sin(ks)/k } with the fixed
point with the coordinates {0, d}.

y
B
d
' A
W
¥ ] 3 'S
04 \3[_'

Fig. 12. The scheme of the crank-rocker mechanism

The vector coordinates will be:{cos(ks)/k, d-
sin(ks)/k}.The y angle between the rocker arm's vector
and the Ox axis is defined from the following expression:

y = arccos cos(ks) =
Jcos?ks+(kd —sinks)’ )
cos(ks)
= arccos

J1+k2d? — 2kdsinks

According to (1), the expression for angle ¢ is written
as:

@ =90° —ks—

cos(ks)
1+ — sinks
J1+k?d? —2kdsink

14
—arccos (14)

Let us find the first and the second derivatives of the
expression (14):

21,2 H
_ kl2+d% ~3dksin ks) )
1+k?d? —2kdsinks

dk®(d?k?* —1)cos ks
Q"= ( ) (16)

(L+Kk2d? — 2kdsinks)

-2 0 2 b)
Fig. 13. Representation of the crank-rocker mechanism's
kinematic elements:
a) points' trajectories and some rocker arm positions,
b) acceleration vectors' distribution along the
trajectories.

Expressions (14), (15), (16) are sufficient to construct
all the kinematic characteristics of the rocker arm points.
Some rocker arm positions and the A, C and D points'
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trajectory are built in Fig. 13,a for k=0,5 m*, d=4 m, and
the distance p=+4 m from points C and D to point A.
Fig. 13,b presents a graphic representation of the
acceleration vectors of these points along the trajectories
of their motion, and Fig. 14 is a graph of the change in
their values. It follows from the graph that at a certain
moment the acceleration of one of the rocker arm points is
zero.

It can be visually determined from Fig. 13,b that this
point belongs to the lower trajectory (the motion of the
point C), when it coincides with the point O.

40¢
W M/c?

30¢
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10}

S, M

D i L
0 5
Fig. 14. A graph of the acceleration value change for the
rocker arm's points

While analyzing expression (16) it can be seen that in
the case 1/k=r=d, the angular acceleration of the rocker
arm in the trihedron system will equal zero, i.e. the
angular velocity of its rotation will be constant. The
family of rocker arm positions of such mechanism is
shown in Fig. 15.

3r

9

%4 -2 0 2 4
Fig. 15. Trajectories of the points and the position of the
driven member in a special case of the crank-rocker
mechanism

Its characteristic feature is that in the absence of an
AC segment the pattern would not change.

When lifting up, point D, moving along the internal
curve, after passing point B starts to move along the outer
curve, and eventually takes the place of point C.

The segment of the rocker arm AD alternately
occupies the inner and the outer spaces, delineated by the
circumference — the trajectory of point A.

2
Fig. 16. Trajectories of the points and the position of the
rocker arm mechanism when k=0,5 and d=1

If the stone rocks while the mechanism shown in Fig.
12 works, provided that d>r, then at d=r (Fig. 15) it
already rotates. Another illustration of the mechanism
with a rotating stone for d<r is shown in Fig. 16.

CONCLUSIONS

1. In certain planar mechanisms the leading member
is a crank, which rotates with the permanent angular
velocity. The trajectory of the crank's ending movement is
a circumference, which is to be taken as a guide curve for
the convected Frenet trihedron. The trihedron moves
along the circumference in such a way that its main unit
normal vector coincides with the crank.

2. The motion of the driven member is described
analytically in the trihedron system. This allows to
receive general relationships for determining all the
necessary kinematic characteristics of the driven member:
the family of its positions, the trajectories of the
individual  points' motion, their velocities and
accelerations. For this, it is necessary to find the law of
rotation of the driven member in the trihedron system for
each mechanism.

3. The developed approach makes it possible to
construct a visual representation of the velocity and
acceleration vectors' distribution of the driven member's
points along their curvilinear trajectory with the required
density.
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OINPEJEJIEHME KUHEMATHUYECKUX
XAPAKTEPUCTHUK BEAOMOI'O 3BEHA ITJIOCKUX
MEXAHHN3MOB C ITOMOIIbIO
TPEXI'PAHHUKA ®PEHE

Cepeeti Iununaxa, Anopeti Yenuorcuwiii, Tamovana Kpecan

AHHOTanMsA. Y MHOTHX IUIOCKMX MEXaHHU3MOB BEAYLIUM
3BEHOM SBJISIETCSI KPUBOILIMII, KOTOPBIA IIOCPENCTBOM
IIapHUpa COEAMHEH C BEJIOMBIM 3BEHOM. Touka
COEIMHEHUS! 3TUX 3BEHBEB, TO €CThb KPHUBOLIMIL, IPH
BpalleHUHU  OINMCHIBAET  OKPYXKHOCTb. B craTthe
MpeagaraeTcsi B TOUKY COEJUHEHMsI 3BEHbEB IIOMECTUTH
BEpIIMHY TpexrpaHHuka dpeHe, opT INIaBHOH HOpMaIU
HanmpaBUTh K ILEHTPY OKPYKHOCTHU, OpPT KacaTelbHOU
COBMECTHUTH C BEKTOPOM CKOPOCTH KpPHUBOIIMIIA, TO €CTh
pPacIoOJIOKUTh II0 KacaTelbHOM K OKpyxkHOcTU. Ilpu
BpalleHWH KPWBOIIWIIA TPEXTPaHHUK TOXe Oyzder
BpalmaTtbCda, MpUYEM €ro rIjJaBHasgd HOpPMallb BCE BpPEMA
OyneT coBmazaTh C KPHUBONIMIOM. TakuM o0pazoM,
MOJIBIDKHBIA TPEXTPAHHUK OYAET COMPOBOMKAAIOLIAM IS
OKPYXHOCTU — TPACKTOPUM JBHKEHHsI KpUBOLIMIA U
CKOPOCTb €T0 JIBIKCHHUS MO OKPY>KHOCTH OYZAET 3aBUCETh
OT YTJIOBOW CKOPOCTH BpAILlEHUs] KPUBOIIUIIA.

[lpu BpamieHWW KPHUBOIIMIIA BMECTE C HUM OyneT
Bpamarbcs TpexrpaHHUK @DpeHe, mpu 3TOM BeAOMOE
3B€HO B BHJE MpPAMOJMHEHHOro OTpe3ka Oyzaer
MPOXOJUTH yepes BEPIIMHY  TpPEXI'pPaHHUKA 3
00pa3oBbIBaTh C OPTOM KacaTelbHOW OIpeneaeHHbINH
yroy. 3aKOH M3MEHEHHs 3TOro yria OyIeT 3aBHCETh OT
KOHCTPYKIMH W Ha3HA4eHHsA MexaHm3Ma. UToOsI
MOJIYYUTh KHHEMATHUYCCKHUC XAPAKTECPUCTUKHU BEIOMOTO
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3BeHa (Ero MOJOKEHHUE B 3aBHCHMOCTH yIia IMOBOPOTa
KpUBOILIMIIA, TPACKTOPUIO, CKOPOCTh U  YCKOpEHHUE
MPOU3BOJBHOM  TOUKH), HEOOXOAMMO 3HAaTh 3aKOH
M3MEHEHHUs yTja MOBOPOTa BEJOMOIO 3BEHA B CHUCTEME
MOJIBMYKHOTO TPEXTPaHHUKA B (YHKIMU [UIMHBI JYTH
HampaBJAOIIEH KPUBOW — TPAGKTOPUU  JIBHKEHUS
LIapHUpa.

Wnes paboTHI COCTOWT B HAXOXICHUM KHHEMAaTHYECKHUX
XapaKTEPUCTHK CJIOKHOTO ABM)KEHHS TOYKH, KOIZa OHa
COBEPILAET OTHOCHUTEIBHOE JBUKEHHE B IOABMKHON
CUCTEME KOOpAMHAT, a cama IOJBWXKHAs CHCTEMa II0
ONPEJEIICHHOMY 3aKOHY JIBHXKETCS [0 OTHOUICHHIO K
HENoJBIWXKHOM cucteme. Eciu 3a MOABMKHYIO CHUCTEMY
KOOpJIWHAT B35Th  COINPOBOXAAIIIUNA  TpEeXTpaHHHUK
KpUBO#, TO 3aKOH JIBMXKEHUS TPEXTPaHHUKA CTaHOBUTCS
HM3BECTHBEIM II0 OTHOIICHHUIO K HEMOJBMIKHOW CHCTEME.
Takum 00pa3oM TOBOPOT BEAOMOIO 3BEHA BOKpPYT
BEpIIMHBI TPEXTPaHHHKAa U OJHOBPEMEHHOE JIBH)KEHUE
BMECTE€ C HHUM ONpPEHENIET OTHOCUTENIBHOE JBH)KEHUE
BEJIOMOTO 3BE€HAa II0 OTHOIICHHIO K HEIOJBIKHOU
CUCTEME KOOPJMHAT.

[TonoxxeHne 3BeHa HaXOAMTCA B NPOEKLUHUSAX Ha OPTHI
TpEXIPaHHUKA M cpa3y XKe MEPEeCUUTHIBACTCS Ha OCH
HEMOJIBIKHOW cUCTeMBbl. TakuM ke 00pa3oM HaxOIUTCS
a0COMIOTHAS TPAEKTOpHUs JABWKEHHUS TOUKHU 3BEHA, 4YTO B
CBOIO OuYepeab TIO3BOJSET HAWTH €e CKOpPOCTh U
yckopenue. HaiiieHHbIie 3aBUCUMOCTH SIBIISIIOTCS OOIIUMU
JIIs1 BEIOMBIX 3BE€HbEB MEXAHU3MOB, KOTOPHIE COUJICHEHBI
MIOCPEJICTBOM mIapHUpa € KPUBOIIMIIOM. Jns
KOHKPETHOIO MEXaHU3Ma HYXXHO 3HAaTh TOJBKO 3aKOH
[IOBOPOTa BEAOMOTO 3BEHa B CHCTEME MOABHXKHOIO
TpeXrpaHHuKa. B craTbe  HaBeleHbl  IPUMEPHI
HAXO0XACHHS 3TOr0 3aKOHa JJIsl HEKOTOPBIX MEXaHU3MOB.
[MocTpoeHB! HE TONBKO TPAPUKU W3MEHCHHS BEIWYHHBI
CKOPOCTH W YCKOPEHHUS OTAENBHBIX TOYEK BEIOMOTO
3B€Ha, HO M WX HaIpaBJICHUE BJOJb TPACKTOPHH TOYKH
3B€HA B BHJIE BEKTOpa C MOJIYJIEM, MPOMOPIMOHATLHBIM
uX BenuduHe. Takoe pacmpeenenre BEKTOPOB CKOPOCTei
U YCKOPEHUU BJIOJIb TPAEKTOPHUU JIBHIKEHHUS TOUKU MOXKET
OBITh BBITIOJHEHO C JIF00O0H IIJI0THOCTHIO.

KiitoueBble cioBa: IUIOCKMH MEXaHU3M, KpPUBOILHII,
BEIOMOE 3BEHO, IMOJABIXKHBIM TpexrpaHHUk DpeHe,
OTHOCHUTEJIbHOE JBUKEHHE TOUYKU, TPAEKTOPHUS, CKOPOCTb,
YCKOpEHUE.
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