Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 1 |
Tytuł artykułu

Effect of diets with fruit oils supplements on rumen fermentation parameters, fatty acid composition and methane production in vitro

Warianty tytułu
Języki publikacji
Effects of diets supplemented with fruit seed oils on fermentation parameters, ciliated protozoan population, and fatty acid composition of the rumen fluid of dairy cows were studied in 24 h batch cultures. Two diets, one containing lucerne plus wheat meal (60:40%) and the other containing of meadow hay plus wheat meal (60:40%), were supplemented with either grape oil or black currant oil (50 g . kg–1 of dry matter). The control diet contained no oil supplementation. The oils were selected due to high content of linoleic acid (grape oil, 696 g . kg–1 of fatty acids; black currant oil, 586 g . kg–1 of fatty acids). Oil supplements did not affect the basal parameters of rumen fermentation. Interactions between the diets and oil supplements affected rumen methane production and either the total or the majority of rumen ciliate species examined. Although the diets had no effect on the total content of volatile fatty acids, the proportions of n-butyrate and iso-valerate were significantly affected. The concentration of polyunsaturated fatty acids was higher in the meadow hay diet than in the lucerne diet, whereas addition of oils increased polyunsaturated fatty acids content. Black currant oil supplementation proved to be more efficient in enhancing polyunsaturated fatty acids content in rumen fluid when compared to grape oil. In conclusion, both oil supplements considerably decreased methane production when lucerne was used as the diet, what could be the effect of detrimental influence of the type of diet and oil supplement on protozoa population. However, the supplements did not negatively affect other rumen parameters, hence may be considered as valuable supplements in ruminant nutrition.
Słowa kluczowe
Opis fizyczny
  • Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
  • Institute of Animal Physiology, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
  • Institute of Animal Physiology, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
  • Institute of Animal Physiology, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
  • Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
  • AOAC, 1990. Association of Official Analytical Chemists, Official Methods of Analysis. 15th Edition. Arlington, VA
  • Barre D.E., 2001. Potential of evening primrose, borage, black currant and fungal oils in human health – a review. Ann. Nutr. Metab. 45, 47–57
  • Beveridge T.H.J., Girard B., Kopp T., Drover J.C.G., 2005. Yield and composition of grape seed oils extracted by supercritical carbon dioxide and petroleum ether: Varietal effects. J. Agr. Food Chem. 53, 1799–1804
  • Cieślak A., Kowalczyk J., Czauderna M., Potkański A., SzumacherStrabel M., 2010. Enhancing unsaturated fatty acids in ewe’s milk by feeding rapeseed or linseed oil. Czech. J. Anim. Sci. 55, 496–504
  • Cieślak A., Machmüller A., Szumacher-Strabel M., Scheeder. M.R.L., 2009a. A note on comparison of two extraction methods used to quantify the C18 fatty acids in feedstuffs and digesta of ruminants. J. Anim. Feed Sci. 18, 362–367
  • Cieślak A., Miltko R., Belżecki G., Szumacher-Strabel M., Michałowski T., 2009b. Rumen ciliates Entodinium caudatum, Eudiplodinium maggii and Diploplastron affine: a potential reservoir of unsaturated fatty acids for the host. Acta Protozool. 48, 335–340
  • Cieślak A., Miltko R., Bełżecki G., Szumacher-Strabel M., Potkański A., Kwiatkowska E., Michałowski T., 2006a. Effect of vegetable oils on the methane concentration and population density of the rumen ciliate, Eremoplastron dilobum, grown in vitro. J. Anim. Feed Sci. 15, Suppl. 1, 15–18
  • Cieślak A., Szumacher-Strabel M., Potkański A., Kowalczyk J., Czauderna M., 2001. The effects of different amounts and types of fat on the extent of C18 unsaturated fatty acid hydrogenation in the rumen of sheep. J. Anim. Feed Sci. 10, Suppl. 2, 123–128
  • Cieślak A., Szumacher-Strabel M., Szymankiewicz E., Piękniewski M., Oleszak P., Siwiński Ł., Potkański A., 2006b. Coconut oil reduces protozoa amount and methane release during fermentation in a Rusitec system. J. Anim. Feed Sci. 15, Suppl. 1, 19–22
  • Cieślak A., Váradyová Z., Kišidayová S., Szumacher-Strabel. M., 2009c. The effects of linoleic acid on the fermentation parameters, population density, and fatty-acid profile of two rumen ciliate cultures, Entodinium caudatum and Diploplastron affine. Acta Protozool. 48, 51–61
  • Coleman G.S., 1978. Rumen entodiniomorphid protozoa. In: A.E.R. Taylor, J.R. Baker (Editors). Methods of cultivating parasites in vitro. London: Academic Press, pp. 39–45
  • Czauderna M., Kowalczyk J., Niedźwiedzka K.M., Mieczkowska A., 2008. Efficient procedure for pre-column derivatization of fatty acids with emphasis on short-chain carboxylic acids. Chem. Anal. (Warsaw) 53, 535–544
  • Dogiel V.A., 1927. Monografie der Familie Ophryoscolecidae. Arch. Protist. 59, 562–564
  • Dubois V., Breton S., Linder M., Fanni J., Parmentier M., 2007. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Europ. J. Lip. Sci. Technol. 109, 710–732
  • Griinari J.M., Corl B.A., Lacy S.H., Chouinard P.Y., Nurmela K.V.V., Bauman D.E., 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by D9-desaturase. J. Nutr. 130, 2285–2291
  • Harfoot C.G., Hazlewood G.P., 1988. Lipid metabolism in the rumen. In: P.M. Hobson (Editor). The Rumen Microbial Ecosystem. Elsevier, London, pp. 285–322
  • Helbig D., Böhm V., Wagner A., Schubert R., Jahreis G., 2008. Berry seed press residues and their valuable ingredients with special regard to black currant seed press residues. Food Chem. 111, 1043–1049
  • Jalč D., Certik M., Kundrikova K., Namestkova P., 2007. Effect of unsaturated C-18 fatty acids (oleic, linoleic and α-linolenic acid) on ruminal fermentation and production of fatty acid isomers in an artificial rumen. Vet. Med.-Czech. 52, 87–94
  • Jalč D., Potkański A., Szumacher-Strabel M., Kowalczyk J., Cieślak A., 2006a. The effect of a high concentrate diet and different fat sources on rumen fermentation in vitro. J. Anim. Feed Sci. 15, Suppl. 1, 137–140
  • Jalč D., Potkański A., Szumacher-Strabel M., Kowalczyk J., Cieślak A., 2006b. The effect of a high forage diet and different oil blends on rumen fermentation in vitro. J. Anim. Feed Sci., 15, Suppl. 1, 141–144
  • Kišidayová S., Mihaliková K., Váradyová Z., Potkański A., SzumacherStrabel M., Cieślak A., Čertík M., Jalč D., 2006. The effect of microbial oil, evening primrose oil, and borage oil on rumen ciliate population in artificial rumen (Rusitec). J. Anim. Feed Sci. 15, Suppl. 1, 153–156
  • Kudo H., Cheng K.J., Imai S., Han S.S., Costerton J.W., 1990. Effects of feed on the composition of the rumen ciliate protozoal population in cattle and its relationship to cellulolytic ciliate protozoa. Anim. Feed Sci. Tech. 29, 159–169
  • Lu Y., Foo L.Y., 2003. Polyphenolic constituents of black currant seed residue. Food Chem. 80, 71–76
  • Machmüller A., 2006. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agr. Ecosyst. Environ. 112, 107–114
  • Matthäus B., 2008.Virgin grape seed oil: Is it really a nutritional highlight? Europ. J. Lip. Sci. Technol. 110, 645–650
  • Meale S.J., Chaves A.V., Baah J., McAlister T.A., 2012. Methane production of different forages in in vitro ruminal fermentation. Asian-Aust. J. Anim. Sci. 25, 86–91
  • Mertens D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing beakers or crucibles: collaborative study. J. AOAC Intern. 85, 1217–1240
  • Michałowski T., 1975. The effect of certain feeding stuffs on rumen ciliate protozoa in vitro. J. Agr. Sci. 85, 151–158
  • Michałowski T., 1987. The volatile fatty-acids production by ciliate protozoa in the rumen of sheep. Acta Protozool. 26, 335–345
  • Michałowski T., Rybicka K., Wereszka K., Kasperowicz A., 2001. Ability of the rumen ciliate Epidinium ecaudatum to digest and use crystalline cellulose and xylan for in vitro growth. Acta Protozool. 40, 203–210
  • Mir P.S., McAllister T.A., Gibb D.J., Okine E.K., 2006. Dietary oil rich in polyunsaturated fatty acids for ruminants: Post-ruminal digesta characteristics and their implications on production. Can. J. Anim. Sci. 86, 159–170
  • Nagadi S., Herrero M., Jessop N.S., 2000. The influence of diet of the donor animal on the initial bacterial concentration of ruminal fluid and in vitro gas production degradability parameters. Anim. Feed Sci. Tech. 87, 231–239
  • NRC, 2001. Nutrient Requirements of Dairy Cattle. Seventh Revised Edition, Washington, DC: National Academy Press, pp. 28–33
  • Ogimoto K., Imai S., 1981. Atlas of Rumen Microbiology. Tokyo: Scientific Societies Press
  • Or-Rashid M.M., Odongo N.E., McBride B.W., 2007. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. J. Anim. Sci. 85, 1228–1234
  • Potkański A., Szumacher-Strabel M., Cieślak A., 2009. Effect of enrichment the summer feeding ration for milking cows with mixture of fish oil and rapeseed oil on selected rumen parameters and milk fatty acid profile. Anim. Sci. Pap. Rep. 27, 83–93
  • Shi J., Yu J., Pohorly J., Young C., Bryan M., Wu Y., 2003. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Int. J. Food Agr. Environ. 1, 42–47
  • Szumacher-Strabel M., Cieślak A., Nowakowska A, 2009a. Effect of oils rich in linoleic acid on in vitro rumen fermentation parameters of sheep, goats and dairy cows. J. Anim. Feed Sci. 18, 440–452
  • Szumacher-Strabel M., Cieślak A., Nowakowska A., Potkański A., 2009b. Feeding plant and fish oils to improve polyunsaturated fat concentrations in intramuscular, perirenal and subcutaneous lambs’ fat. Zuchtungskunde. 81, 133–140 czy ma być a b?
  • Szumacher-Strabel M., Cieślak A., Zmora P., Pers-Kamczyc E., Bielinska S., Stanisz M., Wojtowski J., 2011a. Camelina sativa cake improved unsaturated fatty acids in ewe’s milk. J. Sci. Food Agric. 91, 2031–2037
  • Szumacher-Strabel M., Martin S.A., Potkański A., Cieślak A., Kowalczyk J., 2004. Changes in fermentation processes as the effect of vegetable oil supplementation in in vitro studies. J. Anim. Feed Sci. 13, Suppl. 1, 215–218
  • Szumacher-Strabel M., Potkański A., Kowalczyk J., Cieślak A., Czauderna M., Gubała A., P. Jędroszkowiak P., 2002. The influence of supplemental fat on rumen volatile fatty acid profile, ammonia and pH levels in sheep fed a standard diet. J. Anim. Feed Sci. 11, 577–587
  • Szumacher-Strabel M., Zmora P., Roj E., Stochmal A., Pers-Kamczyc E., Urbanczyk A., Oleszek W., Lechniak D., Cieslak A., 2011b. The potential of the wild dog rose (Rosa canina) to mitigate in vitro rumen methane production. J. Anim. Feed Sci. 20, 285–299
  • Van Hoed V., De Clercq N., Echim C., Andjelkovic M., Leber E., Dewettinck K., Verhe R., 2009. Berry seeds: a source of specialty oils with high content of bioactives and nutritional value. J. Food Lipids 16, 33–49
  • Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597
  • Váradyová Z., Kišidayová S., Siroka P., Jalč D., 2007. Fatty acid profiles of rumen fluid from sheep fed diets supplemented with various oils and effect on the rumen ciliate population. Czech J. Anim. Sci. 52, 399–406
  • Veira D.M., Ivan M., Jui P.Y., 1983. Rumen ciliate protozoa: Effects on digestion in the stomach of sheep. J. Dairy Sci. 66, 1015–1022
  • Wachira A.M., Sinclair L.A., Wilkinson R.G., Hallet K., Enser M., Wood J.D., 2000. Rumen biohydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. J. Agr. Sci. 135, 419–428
  • Zhang C.M., Guo Y.Q., Yuan Z.P., Wu I.M., Wang J.K., Liu J.X., Zhu W.Y., 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Tech. 146, 259–269
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.