PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 1 |

Tytuł artykułu

An analysis of Myotis peninsularis (Vespertilionidae) blending morphometric and genetic datasets

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Myotis peninsularis Miller, 1898 is an endemic bat from the Cape Region in Baja California Sur, México. Its taxonomic status is unclear, either as a valid species or as a subspecies of M. velifer (J. A. Allen, 1890). In order to assess its taxonomic status, the objective of this study was to examine phylogenetic relationships of M. peninsularis, using molecular and geometric morphometric data. Two mitochondrial genes were analyzed: cytochrome oxidase subunit I (COI) and cytochrome b (Cytb). The phylogenetic analysis (maximum likelihood and Bayesian Inference) showed that M. peninsularis and M. velifer were sister groups, collectively forming a monophyletic assemblage. We observed less than 2% of genetic distance in the Cytb, considered an interval at the subspecies level. The geometric morphometric analysis showed differences in skull shape. We obtained three morphotypes: M. peninsularis (Baja California group), M. velifer incautus (northern population) and M. v. velifer (southern population). The most important differences were located in the braincase (ventral, dorsal and lateral view). The lateral view was the most discriminating. The Cape Region specimens had the sagittal crest more procumbent in the front than the rear of the braincase. The slope line at the rostral lateral view was more abrupt in M. velifer populations. Morphologically, the three lineages tended to possess the same normal variation as the entire Mexican population of M. velifer but with a specific morphotype associated to its distribution. In a combined molecular and landmark configuration of the phylogenetic analysis, the ancestral shape corresponded to an intermediate shape between M. peninsularis and M. velifer, presenting a similar variation to the one of intra-specific level in M. velifer. We considered M. peninsularis a junior-synonym of M. velifer.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.37-47,fig.,ref,

Twórcy

  • Centro de Investigaciones Biologicas del Noroeste, S.C. Av. Instituto Politecnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur 23096, Mexico
  • Centro de Investigaciones Biologicas del Noroeste, S.C. Av. Instituto Politecnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur 23096, Mexico
autor
  • Instituto de Ecologia, A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa 91070, Veracruz, Mexico

Bibliografia

  • 1. S. T. Álvarez-Castañeda , and M. A. Bogan . 1998. Myotis peninsularis. Mammalian Species, 573: 1–2. Google Scholar
  • 2. R. J. Baker , and R. D. Bradley . 2006. Speciation in mammals and the genetic species concept. Journal of Mammalogy, 87: 643–662. Google Scholar
  • 3. L. Barčiová 2009. Advances in insectivore and rodent systematics due to geometric morphometrics. Mammal Review, 39: 80–91. Google Scholar
  • 4. M. A. Bogan 1999. Family Vespertilionidae. Pp. 139–181, in Mamiferos del Noroeste de México ( S. T. Álvarez-Castañeda and J. L. Patton , eds.). Centro de Investigaciones Biológicas del Noroeste S. C., Baja California Sur, México, 237 pp. Google Scholar
  • 5. A. J. Bohonak 2002. IBD (Isolation By Distance): a program for analyses of isolation by distance. Journal of Heredity, 93: 153–154. Google Scholar
  • 6. R. D. Bradley , and R. J. Baker . 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy, 82: 960–973. Google Scholar
  • 7. T. J. Case 1978. A general explanation for insular body size trends in terrestrial vertebrates. Ecology, 59: 1–18. Google Scholar
  • 8. S. A. Catalano , and P. A. Goloboff . 2012. Simultaneously mapping and superimposing landmark configurations with parsimony as optimality criterion. Systematic Biology, 61: 392–400. Google Scholar
  • 9. R. Caumul , and P. D. Polly . 2005. Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution, 59: 2460–2472. Google Scholar
  • 10. E. L. Clare , B. K. Lim , M. D. Engstrom , J. L. Eger , and P. D. N. Hebert . 2007. DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes, 7: 184–190. Google Scholar
  • 11. E. L. Clare , B. K. Lim , M. B. Fenton , and P. D. N. Hebert . 2011. Neotropical bats: estimating species diversity with DNA barcodes. PloS ONE, 6: e22648. Google Scholar
  • 12. A. T. Dewey 2006. Systematics and phylogeography of North American Myotis (Chiroptera: Vespertilionidae). Ph.D. Thesis, University of Michigan, Michigan, xii + 164 pp . Google Scholar
  • 13. A. Evin , M. Baylac , M. Ruedi , M. Mucedda , and J.-M. Pons . 2008. Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): a geometric morphometric appraisal. Biological Journal of the Linnean Society, 95: 529–538. Google Scholar
  • 14. A. Evin , I. Horáček , and P. Hulva . 2011. Phenotypic diversification and island evolution of pipistrelle bats (Pipistrellus pipistrellus group) in the Mediterranean region inferred from geometric morphometrics and molecular phylogenetics. Journal of Biogeography, 38: 2091–2105. Google Scholar
  • 15. J. H. Fitch , K. A. J. Shump , and A. U. Shump . 1981. Myotis velifer. Mammalian Species, 149: 1–5. Google Scholar
  • 16. P. A. Goloboff , C. I. Mattoni , and A. S. Quinteros . 2006. Continuous characters analyzed as such. Cladistics, 22: 589–601. Google Scholar
  • 17. P. A. Goloboff , J. S. Farris , and K. C. Nixon . 2008. TNT, a free program for phylogenetyc analysis. Cladistics, 24: 774–786. Google Scholar
  • 18. J. A. Guerrero , E. De Luna , and D. González . 2004. Taxonomic status of Artibeus jamaicensis triomylus inferred from molecular and morphometric data. Journal of Mammalogy, 85: 866–874. Google Scholar
  • 19. E. R. Hall 1981. The mammals of North America. Ronald Press, New York, USA. Google Scholar
  • 20. M. Hasegawa , H. Kishino , and T. Yano . 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22: 160–174. Google Scholar
  • 21. B. J. Hayward 1970. The natural history of the cave bat, Myotis velifer. Western New México University Research Science, 1: 1–74. Google Scholar
  • 22. G. Hewitt 2000. The genetic legacy of Quaternary ice ages. Nature, 405: 907–913. Google Scholar
  • 23. J. P. Huelsenbeck , and F. Ronquist . 2001. MrBayes: Bayesian inference of phylogeny, 17: 754–755. Google Scholar
  • 24. N. V. Ivanova , and C. Grainger . 2007. C. C. D. B. Protocols. Primer sets. Canadian Centre for DNA Barcoding, 1–2. Google Scholar
  • 25. K. E. Jones , A. Purvis , A. MacLarnon , O. R. P. Binindaemonds , and N. B. Simmons . 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological reviews of the Cambridge Philosophical Society, 77: 223–259. Google Scholar
  • 26. M. Kimura 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the USA, 78: 454–458. Google Scholar
  • 27. C. P. Klingenberg 2002. Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene, 287: 3–10. Google Scholar
  • 28. P. A. Larsen , L. Siles , S. C. Pedersen , and G. G. Kwiecinski . 2011. A new species of Micronycteris (Chiroptera: Phyllostomidae) from Saint Vincent, Lesser Antilles. Mammalian Biology, 76: 687–700. Google Scholar
  • 29. R. J. Larsen , P. A. Larsen , H. H. Genoways , F. M. Catzeflis , K. Geluso , G. G. Kwiecinski , S. C. Pedersen , F. Simal , and R. J. Baker . 2012a. Evolutionary history of Caribbean species of Myotis, with evidence of a third Lesser Antillean endemic. Mammalian Biology, 77: 124–134. Google Scholar
  • 30. R. J. Larsen , M. C. Knapp , H. H. Genoways , F. A. A. Khan , P. A. Larsen , D. E. Wilson , and R. J. Baker . 2012b. Genetic diversity of neotropical Myotis (Chiroptera: Vespertilio nidae) with an emphasis on South American species. PLoS ONE, 7: e46578. Google Scholar
  • 31. R. K. Laval 1973. A revision of the Neotropical bats of the genus Myotis. Natural History Museum, Los Angeles County, Science Bulletin, 15: 1–54. Google Scholar
  • 32. M. R. Marchán-Rivadeneira , P. A. Larsen , C. J. Phillips , R. E. Strauss , and R. J. Baker . 2012. On the association between environmental gradients and skull size variation in the great fruit-eating bat, Artibeus lituratus (Chiroptera: Phyllostomidae). Biological Journal of the Linnean Society, 105: 623–634. Google Scholar
  • 33. G. S. Miller 1898. Description of a new bat from Lower California. Journal of Natural History, 2: 124–125. Google Scholar
  • 34. G. S. Miller , and G. M. Allen . 1928. The American bats of the genera Myotis and Pizonyx. Bulletin, United States National Museum, 144: 1–218. Google Scholar
  • 35. R. Moratelli , and J. A. De Oliveira . 2011. Morphometric and morphological variation in South American populations of Myotis albescens (Chiroptera: Vespertilionidae). Zoologia, 28: 789–802. Google Scholar
  • 36. J. A. A. Nylander 2004. MrModeltest version 2. Evolutionary Biology Center, Uppsala University, Uppsala, Sweden. Google Scholar
  • 37. S. M. Ospina-Garcés 2010. Análisis ecomorfológico del aparato masticatorio de Myotis vivesi (Chiroptera: Vespertilionidae). Universidad Nacional Autónoma de México, México D.F. México. Google Scholar
  • 38. D. Posada 2004. Collapse: describing haplotypes from sequence alignments. University of Vigo, Vigo, Spain. Available at http://darwin.uvigo.es/software/collapse.html. Google Scholar
  • 39. E. Rios , and S. T. Álvarez-Castañeda . 2013. Nomenclatural change of Chaetodipus dalquesti. Western North American Naturalist 73: 399–400. Google Scholar
  • 40. R. M. Rodriguez , and L. K. Ammerman . 2004. Mitochondrial DNA divergence does not reflect morphological difference between Myotis californicus and Myotis ciliolabrum. Journal of Mammalogy, 85: 842–851. Google Scholar
  • 41. J. Rohlf 2008. TPSDig ver. 2.12. SUNY at Stony Brook. Nation al Science Foundation, Stony Brook, USA. Available at http://life.bio.sunysb.edu/ee/rohlf/software.htmlp. Google Scholar
  • 42. J. Rohlf 2009. TPSUtil ver. 1.44. SUNY at Stony Brook, Nation al Science Foundation, Stony Brook, USA. Available at http://life.bio.sunysb.edu/ee/rohlf/software.htmlp. Google Scholar
  • 43. J. Rohlf , and H. D. Sheets . 2004. Integrated morphometrics package (IMP). Morphometrics software. Available at http://www3.canisius.edu/~sheets/morphsoft.htmlp. Google Scholar
  • 44. M. Ruedi , and F. Mayer . 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21: 436–448. Google Scholar
  • 45. J. Sambrook , E. F. Fritsch , and T. Maniatis . 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York, USA, 1626 pp. Google Scholar
  • 46. D. H. Sheets 2011a. CoordGen7a. IMP7. Canisius College, Buffalo, USA. Google Scholar
  • 47. D. H. Sheets 2011b. CVAGen7b. IMP7. Canisius College, Buffalo, USA. Google Scholar
  • 48. D. H. Sheets and M. L. Zelditch . 2010. Disparity Box version 7a. IMP7. Canisius College, Buffalo, USA. Google Scholar
  • 49. N. B. Simmons 2005. Order Chiroptera. Pp. 312–529, in Mam mals of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder , eds.). The Johns Hopkins University Press, Baltimore, 2142 pp. Google Scholar
  • 50. M. F. Smith , and J. L. Patton . 1993. The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biological Journal of the Linnean Society, 50: 149–177. Google Scholar
  • 51. B. Stadelmann , L.-K. Lin , T. H. Kunz , and M. Ruedi . 2007. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Molecular Phylogenetics and Evolution, 43: 32–48. Google Scholar
  • 52. D. L. Swofford 2001. PAUP *: Phylogenetic Analyses Using Parsimony (* and other methods). Version 4.0b10. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts. Google Scholar
  • 53. A. Sztencel-Jabłonka , G. Jones , and W. Bogdanowicz . 2009. Skull morphology of two cryptic bat species: Pipi strellus pipistrellus and P. pygmaeus — a 3D geometric morphometrics approach with landmark reconstruction. Acta Chiropterologica, 11: 113–126. Google Scholar
  • 54. K. Tamura , and M. Nei . 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512–526. Google Scholar
  • 55. T. A. Vaughan 1954. A new subspecies of bat (Myotis velifer) from southeastern California and Arizona. University of Kansas Publications, Museum of Natural History, 7: 507–512. Google Scholar
  • 56. D. J. Zwickl 2011. GARLI, Genetic Algorithm for Rapid Likelihood Inferenc. Version 2.0. Available at http://www.nescent.org/wg/garli. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-df62e193-3f78-4399-adfe-db24811a969e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.