PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 73 | 06 |

Tytuł artykułu

Influence of oral administration of HMB to pregnant dams on calbindin expression in the dentate gyrus of the hippocampus during postnatal development in spiny mice offspring

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to investigate the morphology, density and immunostaining intensity of calbindin (CB)-positive neurons of dentate gyrus (DG) in new-born (P0) and 21-day-old (P21) male Acomys cahirinus mice from dams receiving β-hydroxy-β-methylbutyrate (HMB) during pregnancy. Different substances administrated to pregnant dams may affect the calcium ion homeostasis which is crucial for the proper brain development of their offspring. DG with hilus (H) plays an important role in memory and learning processes. Calcium levels in DG are regulated by buffering proteins like calbindin D28k (CB). Experimental dams were orally treated with HMB at a dose of 0.2 g/kg b.w. Half of new-born animals were euthanised after birth and the rest after the 21st day of life. The brains were dissected and embedded in paraffin blocks using a routine histological technique. In order to demonstrate CB protein expression an immunohistochemical peroxidase-antiperoxidase reaction was conducted. The results of the study did not reveal important morphological alterations. There were no statistically significant changes in the density of the studied cells either in P0 and P21 animals. However, the authors have demonstrated a statistically significant increase of the average CB-immunostaining intensity in nuclei and cytoplasm in both age groups. It may be a result of a compensation effect to alterations that occurred under the influence of HMB. On the basis of the conducted research, it may be assumed that HMB activity in DG may provide long-term consequences.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

73

Numer

06

Opis fizyczny

p.341-345,fig.,ref.

Twórcy

autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
  • Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland

Bibliografia

  • Abraham H., Veszpremi B., Kravjak A., Kovács K., Gömöri E., Seress L.: Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus. Int. J. Devl. Neurosci. 2009, 27, 115-127.
  • Arundine M., Tymianski M.: Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 2003, 34, 325-337.
  • Bootman M. D., Collins T. J., Peppiatt C. M., Prothero L. S., MacKenzie L., De Smet P., Travers M., Tovey S. C., Seo J. T., Berridge M. J., Ciccolini F., Lipp P.: Calcium signalling – an overview. Semin. Cell Dev. Biol. 2001, 12, 3-10.
  • Bregestovski P., Spitzer N.: Calcium in the function of the nervous system: New implications. Cell Calcium 2005, 37, 371-374.
  • Brunjes P. C.: The precocial mouse, Acomys cahirinus. Physiology 1990, 18, 339-350.
  • D’Orlando C., Celio M. R., Schwaller B.: Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res. 2002, 945, 181-190.
  • Dumas T. C., Powers E. C., Tarapore P. E., Sapolsky R. M.: Overexpression of Calbindin d28k in dentate Gyrus Granule Cells Alters Mossy Fiber Presynaptic Function and Impairs Hippocampal-Dependent Memory. Hippocampus 2004, 14, 702-709.
  • El Falougy H., Kubikova E., Benuska J.: The microscopical structure of the hippocampus in the rat. Bratisl. Lek. Listy 2008, 109, 106-110.
  • Eriksson P. S., Perfilieva E., Bjork-Eriksson T., Alborn A. M., Nordborg C., Peterson D. A., Gage F. H.: Neurogenesis in the adult human hippocampus. Nat. Med. 1998, 4, 1313-1317.
  • Gage F. H., Kempermann G., Palmer T. D., Peterson D. A., Raj J.: Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 1998, 36, 249-266.
  • Karadi K., Janszky J., Gyimesi C., Horváth Z., Lucza T., Dóczi T., Kállai J., Abrahám H.: Correlation between celbindin expression in granule cells of the resected hippocampal dentate gyrus and verbal memory in temporal lobe epilepsy. Epilepsy Behav. 2012, 25, 110-119.
  • Kim J. H., Lee J., Song Y. M., Park C. H., Hwang S. J., Kim Y. S., Kaang B. K., Son H.: Overexpression of calbindin-D28K in hippocampal progenitor cells increases neuronal differentiation and neurite outgrowth. FASEB J. 2006, 20, 109-111.
  • Kojetin D. J., Venters R. A., Kordys D. R., Thompson R. J., Kumar R., Cavanagh J.: Structure, binding interface and hydrophobic transities of Ca2+-loaded calbindin-D28k. Nat. Struct. Mol. Biol. 2006, 13, 641-647.
  • König J. F. R., Klippel R. A.: The Rat Brain: A stereotactic atlas of the forebrain and lower parts of the brain stem. Williams&Willkins, Baltimore 1963.
  • Loos C. M. van der: Multiple immunoenzyme staining: Methods and Visualizations for the Observation With Spectral Imaging. J. Histochem. Cytochem. 2008, 56, 313-328.
  • Lucas A.: Programming by Early Nutrition: An Experimental Approach. J. Nutr. 1998, 128, 401S-406S.
  • Luiten P. G. M., Buwalda B., Traber J., Nyakas C.: Induction of enhanced postnatal expression of immunoreactive calbindin-D28k in rat forebrain by the calcium antagonist nimodipine. Brain Res. Dev. Brain Res. 1994, 79, 10-18.
  • Łuszczewska-Sierakowska I., Wawrzyniak-Gacek A., Krawczyk-Marć I., Jarosz Ł., Grądzki Z., Tatara M. R.: Morphological and histological analysis of the hippocampal formation in the American mink. Med. Weter. 2014, 70, 428-431.
  • Mattson M. P., Rychlik B., Chu C., Christakos S.: Evidence for calcium-reducing and excitoprotective roles for the calbindin-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 1991, 6, 41-51.
  • Monje M. L., Philips R., Sapolsky R.: Calbindin overexpression buffers hippocampal cultures from the energetic impairments caused by glutamate. Brain Res. 2001, 911, 37-42.
  • Muller A., Kukley M., Stausberg P., Beck H., Müller W., Dietrich D.: Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampus neurons. J. Neurosci. 2005, 25, 558-565.
  • Nguyen D. H., Zhou T., Shu J., Mao J. H.: Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. Cancer InCytes 2013, 2, 1-4.
  • Rausche G., Igelmund P., Heinemann U.: Effects of changes in extracellular potassium, magnesiumand calcium concentration on synaptic transmission in area CA1and the dentate gyrus of rat hippocampal slices. Pflugers Arch. 1990, 415, 588-593.
  • Seress L.: Comparative anatomy of the hippocampal dentate gyrus in adult and developing rodents, non-human primates and humans. Prog. Brain Res. 2007, 163, 23-41.
  • Sloviter R. S.: Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localisation in the rat hippocampus with specific reference to the selective vulneralibity of hippocampal neurons to seizure activity. J. Comp. Neurol. 1989, 280, 183-196.
  • Tatara M. R.: Neonatal programming of sceletal development in sheep is mediated by somatotrophic axis function. Exp. Physiol. 2008, 93, 763-772.
  • Tatara M. R., Krupski W.: Prenatal programming of skeletal development in the offspring: effects of Materna treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone 2007, 40, 1615-1622.
  • Watanabe J., Asaka Y., Kanamura S.: Relationship between immunostaining intensity and antygen content in sections. J. Histochem. Cytochem. 1996, 44, 1451-1458.
  • Wilkinson D. J., Hossain T., Hill D. S.: Effect of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 2013, 591, 2911-2923.
  • Wilson G. J., Wilson J. M., Mannien A. H.: Effects of beta-hydroxy-betamethylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex and training experience: A review. Nutr. Metab. 2008, 5, 1-17.
  • Yang Q., Wang S., Hamberger A., Celio M. R., Haglid K. G.: Delayed Decrease of Calbindin Immunoreactivity in the Granule Cell-Mossy Fibers alter Kainic Acid-Induced Seizures. Brain Res. Bull. 1997, 43, 551-559.
  • Yoo D. Y., Yoo K., Park J. H., Ji Won C., Woosuk K., In Koo H., Moo-Ho W.: Detailed differentiation of calbindin D-28-k-immunoreactive cells in the dentate gyrus in C57BL/6 mice at early postnatal stages. Lab. Anim. Res. 2011, 27, 153-159.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-df21e496-2601-4acc-a3a4-d1724f6d837e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.