PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Effect of bicarbonate stress on carbonic anhydrase gene expressions from Orychophragmus violaceus and Brassica juncea seedlings

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Three β-type genes coding for carbonic anhydrase and CA activities from Orychophragmus violaceus L. and Brassica juncea L. leaves in response to NaHCO₃ -induced bicarbonate stress were examined. Three full-length cDNA CDS sequences were designated as OvCA1, OvCA3, and OvCA4 in Orychophragmus violaceus, and as BjCA1, BjCA3, and BjCA4 in Brassica juncea; these genes encoding β-CAs were identified and characterized. In particular, OvCA1 and BjCA1 encode two putative chloroplast isoforms. OvCA3 and BjCA3 encode two putative cytosolic isoforms. OvCA4 and BjCA4 encode two putative plasma membrane isoforms. Quantitative real-time RT-PCR analysis revealed that OvCA1 and OvCA4 expressions in Orychophragmus violaceus, BjCA1, and BjCA4 expressions in Brassica juncea changed synchronously with CA activities as bicarbonate stress was intensified. Bicarbonate stress synchronously stimulated OvCA1 and OvCA4 expressions along with CA activities in Orychophragmus violaceus at slight stress level; but it decreased CA activity, BjCA1 and BjCA4 expressions, and stimulated BjCA3 expression in Brassica juncea. Orychoophragmus violaceus could better adapt to slight bicarbonate stress than Brassica juncea due to the former exhibiting higher OvCA3 expression levels and CA activities than the latter. The responses of CA1 and CA4 in Orychophragmus violaceus and CA3 in Brassica juncea to bicarbonate stress partly regulate HCO₃⁻ to water and CO₂ supplied to plants. Diverse CA gene expressions can partially account for different adaptation strategies of the two plant species subjected to different bicarbonate stress levels.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1135-1143,fig.,ref.

Twórcy

autor
  • School of Karst Science, Guizhou Normal University, Guiyang, Guizhou, China
  • State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, China
autor
  • Research Centre for Environmental Bio-Science and Technology, State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China

Bibliografia

  • 1. Yao K., Wu Y.Y. Phosphofructokinase and glucose-6-phosphate dehydrogenase in response to drought and bicarbonate stress at transcriptional and functional levels in mulberry. Russian Journal of Plant Physiology, 63 (2), 235, 2016.
  • 2. Wu Y.Y., Xing D.K. Effect of bicarbonate treatment on photosynthetic assimilation of inorganic carbon in two plant species of Moraceae. Photosynthetica, 50 (4), 587, 2012.
  • 3. Zhang C., Wang J.L., Pu J. B., Yan J. Bicarbonate daily variations in a karst River: the carbon sink effect of subaquatic vegetation photosynthesis. Acta Geologica Sinica-English Edition, 86 (4), 973, 2012.
  • 4. Mohsenian Y., Roosta H.R., Karimi H.R., Esmaeilizade M. Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants. Photosynthetica, 50 (3), 411, 2012.
  • 5. Yang J.Y., Zheng W., Tian Y., Wu Y., Zhou D.W. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 49 (2), 275, 2011.
  • 6. Tavakkoli M.M., Roosta H.R., Hamidpour M. Identification of the suitable growth media for alleviating the adverse effect of sodium bicarbonate on gerbera in soilless culture system. Journal of Science & Technology of Greenhouse Culture, 5 (17), 39, 2014.
  • 7. Mohsenian Y., Roosta H.R. Effects of Grafting on Alkali Stress in Tomato Plants: Datura Rootstock Improve Alkalinity Tolerance of Tomato Plants. Journal of Plant Nutrition, 38 (1), 51, 2015.
  • 8. Babuin M.F., Campestre M.P., Rocco R., Bordenave C.D., Escaray F.J., Antonelli C., Calzadilla P., Gárriz A., Serna E., Carrasco P., Ruiz O.A., Menendez A.B. Response to long-term NaHCO₃-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization. Plos One, 9 (5), 97, 2014.
  • 9. Kobayashi S., Satone H., Tan E., Kurokochi H., Asakawa S., Liu S., Takano T. Transcriptional responses of a bicarbonate-tolerant monocot, Puccinellia tenuiflora, and a related bicarbonate-sensitive species, Poa annua, to NaHCO₃ stress. International Journal of Molecular Sciences, 16 (1), 496, 2014.
  • 10. Pang Q., Zhang A., Zang W., Wei L., Yan X. Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculata. Plant & Soil, 402 (1-2), 379, 2016.
  • 11. Abbasi G.H., Akhtar J., Ahmad R., Jamil M., Anwar-Ul-Haq M., Ali S., Ijaz M. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regulation, 76 (1), 111, 2015.
  • 12. Wang R., Wu Y.Y., Xing D.K., Hang H.T., Xie T.X., Yang X.Q., Zhang K.Y., Rao S. Biomass production of three biofuel energy plants’ use of a new carbon resource by carbonic anhydrase in simulated karst soils: mechanism and capacity. Energies, 10 (9), 1370, 2017.
  • 13. Wang R., Wu Y.Y., Hang H.T., Liu Y., Xie T.X., Zhang K., Li H.T. Orychophragmus violaceus, L. a marginal land-based plant for biodiesel feedstock: Heterogeneous catalysis, fuel properties, and potential. Energy Conversion & Management, 84 (June), 497, 2014.
  • 14. Wang R., Wu Y.Y., Xing D.K., Hang H.T., Liu Y., Zhang K.Y., Yao K. Physiological characteristics and inorganic carbon-usage capacity of three biomass plants under simulative karst adversity(Bicarbonate Stress). Earth & Environment, 43 (1), 21, 2015 [In Chinese].
  • 15. Azeem A., Wu Y.Y., Xing D.K., Javed Q., Uiiah I. Photosynthetic response of two okra cultivars under salt stress and re-watering. Journal of Plant Interactions, 12 (1), 67, 2017.
  • 16. Müller W.E., Qiang L., Schröder H.C., Hönig N., Yuan D., Grebenjuk V.A., Mussino F., Giovine M., Wang X. Carbonic anhydrase: a key regulatory and detoxifying enzyme for Karst plants. Planta, 239 (1), 213, 2014.
  • 17. Hang H.T., Wu Y.Y. Quantification of photosynthetic inorganic carbon utilisation via a bidirectional stable carbon isotope tracer. Acta Geochimica, 35 (2), 130, 2016.
  • 18. Wu Y.Y., Wu X.M., Li P.P., Zhao Y.G., Li X.T., Zhao X.Z. Comparison of photosynthetic activity of Orychophragmus violaceus, and oil-seed rape. Photosynthetica, 43 (2), 299, 2005.
  • 19. Hayat S., Ali B., Hasan S.A., Ahmad A. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental Experimental Botany, 60 (1), 33, 2007.
  • 20. Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacology & Therapeutics, 74 (1), 1, 1997.
  • 21. Sun W.H., Wu Y.Y., Sun Z.Z., Wu Q.X., Wen X.Y. Enzymatic characteristics of higher plant carbonic anhydrase and its role in photosynthesis. Journal of Plant Studies, 3 (2), 39, 2014.
  • 22. Badger M. The roles of carbonic anhydrases in photosynthetic CO₂ concentrating mechanisms. Photosynthesis Research, 77 (2-3), 83, 2003.
  • 23. Hu H., Boissondernier A., Israelssonnordstrom M., Bohmer M., Xue S., Ries A., Godoski J., Kuhn J.M., Schroeder J.I. Carbonic anhydrases are upstream regulators of CO₂-controlled stomatal movements in guard cells. Nature Cell Biology, 12 (1), 87, 2010.
  • 24. Tetu S.G., Tanz S.K., Vella N., Burnell J.N., Ludwig M. The Flaveria bidentis β-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns. Plant Physiology, 144 (3), 1316, 2007.
  • 25. Fabre N., Reiter I.M., Becuwelinka N., Genty B., Rumeau D. Characterization and expression analysis of genes encoding α and β carbonic anhydrases in Arabidopsis. Plant Cell & Environment, 30 (5), 617, 2007.
  • 26. Wang M., Zhang Q., Liu F.C., Xie W.F., Wang G.D., Wang J., Gao Q.H., Duan K. Family-wide expression characterization of Arabidopsis beta-carbonic anhydrase genes using qRT-PCR and promoter: GUS fusions. Biochimie, 97 (1), 219, 2014.
  • 27. Li H., Cheng Z. Hoagland nutrient solution promotes the growth of cucumber seedlings under light-emitting diode light. Acta Agriculturae Scandinavica, 65 (1), 74, 2015.
  • 28. Wu Y.Y., Shi Q.Q., Wang K., Li P.P., Xing D.K., Zhu Y.L., Song Y.J. An electrochemical approach coupled with Sb microelectrode to determine the activities of carbonic anhydrase in the plant leaves. Future Intelligent Information Systems. 87; Springer, 2011.
  • 29. Aminian M., Nabatchian F., Vaisi-Raygani A., Torabi M. Mechanism of Coomassie Brilliant Blue G-250 binding to cetyl-trimethyl-ammonium bromide: an interference with the Bradford assay. Analytical Biochemistry, 434 (2), 287, 2013.
  • 30. Wu X., Wan X.F., Wu G., Xu D., Lin G. Phylogenetic analysis using complete signature information of whole genomes and clustered Neighbour-Joining method. International Journal of Bioinformatics Research & Applications, 2 (3), 219, 2006.
  • 31. Christou A., Georgiadou E.C., Filippou P., Manganaris G.A., Fotopoulos V. Establishment of a rapid, inexpensive protocol for extraction of high quality rna from small amounts of strawberry plant tissues and other recalcitrant fruit crops. Gene, 537 (1), 169, 2014.
  • 32. Malash G.F., El-Khaiary M.I. Piecewise linear regression: A statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chemical Engineering Journal, 163 (3), 256, 2010.
  • 33. Burén S., Ortegavillasante C., Blancorivero A., Martinezbernardini A., Shutova T., Shevela D., Messinger J., Bako L., Villarejo A., Samuelsson G. Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana. Plos One, 6( 6), e21021, 2011.
  • 34. Hu H., Rappel W.J., Occhipinti R., Ries A., Böhmer M., You L., Xiao C., Engineer C.B., Boron W.F., Schroeder J.I. Distinct cellular locations of carbonic anhydrases mediate carbon dioxide control of stomatal movements. Plant Physiology, 169 (2), 1168, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-defd667a-cfd6-49c1-9c90-92a2433941bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.