Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 2 |
Tytuł artykułu

Identification of genes differentially expressed during embryogenesis in Brassica campestris L.

Warianty tytułu
Języki publikacji
Gene expression in embryogenesis of Brassica campestris L. is analyzed using cDNA-AFLP technique. The whole embryogenesis was divided into six embryonic stages. In total, 4,267 bands were obtained from embryogenesis of B. campestris L. A total of 216 transcriptderived fragments (TDFs), differentially expressed in six stages of embryogenesis, were selected for sequencing. By searching BLASTN and BLASTX, most of 204 TDFs were homologous to Arabidopsis thaliana and Brassica napus sequences, and the rest of the 12 TDFs did not match with other plants’ genes. As a result, 178 TDFs are matched with genes encoding either known or putative proteins in higher plants, and 26 TDFs are homologous to unknown genes. Besides, a selected subset of differentially expressed TDFs is confirmed by RT-PCR, and relative transcript abundance of TDFs was shown. Some embryo-specific genes are expressed in embryogenesis of B. campestris. Expression profiles of many TDFs show similarity to those of the relevant Arabidopsis genes. The potential roles of these genes in embryo development are discussed.
Słowa kluczowe
Opis fizyczny
  • Key Laboratory of the MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
  • Key Laboratory of the MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
  • Key Laboratory of the MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
  • Key Laboratory of the MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
  • Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753
  • Beers EP, Jones AM, Dickerman AW (2004) The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65:43–58
  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123
  • Chaudhury AM, Craig S, Dennis ES, Peacock WJ (1998) Ovule and embryo development, apomixis and fertilization. Curr Opin Plant Biol 1:26–31
  • Chen GH, Huang LT, Yap MN, Lee RH, Huang YJ, Cheng MC, Chen SCG (2002) Molecular characterization of a senescence associated gene encoding cysteine proteinase and its gene expression during leaf senescence in sweet potato. Plant Cell Physiol 43:984–991
  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR (2005) The etr1–2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48
  • Dure L (1993) The LEA proteins of higher plants. In: Verma DPS (ed) Controls of plant gene expression. CRC Press, Boca Raton, pp 325–335
  • Fukumura R, Takahashi H, Saito T, Tsutsumi Y, Fujimori A, Sato S, Tatsumi K, Araki R, Abe M (2003) A sensitive transcriptome analysis method that can detect unknown transcripts. Nucleic Acids Res 31:e94
  • Furner IJ, Sheikh MA, Collett CE (1998) Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149:651–662
  • Ghelis T, Bolbach G, Clodic G, Habricot Y, Miginiac E, Sotta B, Jeannette E (2008) Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells. Plant Physiol 148:1668–1680
  • Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280:32914–32920
  • Le BH, Cheng C, Bui AQ, Wameister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA 170:8063–8070
  • Long JA, Woody S, Poethig S, Meyerowitz EM, Barton MK (2002) Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development 129:2797–2806
  • Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312: 1520–1523
  • Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558
  • Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I (2005) A vacuolar processing enzyme, δVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887
  • Ondzighi CA, Christopher DA, Cho EJ, Chang S, Andrew Staehelin L (2008) Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 20:2205–2220
  • Pagnussat GC, Yu HJ, Ngo QA, Sarojam R, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2004) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614
  • Pracharoenwattana I, Cornah JE, Smith SM (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17:2037–2048
  • Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G (2003) Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics 82:606–618
  • Rocha PSCF, Sheikh M, Melchiorre R, Fagard M, Boutet S, Loach R, Moffatt B, Wagner C, Vaucheret H, Furner I (2005) The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylation-dependent gene silencing. Plant Cell 17:404–417
  • Rylott EL, Rogers CA, Gilday AD, Edgell T, Larson TR, Graham IA (2003) Arabidopsis mutants in short- and medium-chain acyl-CoA oxidase activities accumulate acyl-CoAs and reveal that fatty acid β-oxidation is essential for embryo development. J Biol Chem 278:21370–21377
  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York
  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506
  • Sridha S, Wu KL (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46: 124–133
  • Thomas TL (1993) Gene expression during plant embryogenesis and germination. Plant Cell 5:1401–1410
  • Treml BS, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Ruiz RAT (2005) The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 132:4063–4074
  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney C, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220
  • Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flugge UI, Maurino VG (2005) A comprehensive analysis of the NADPmalic enzyme gene family of Arabidopsis. Plant Physiol 139:39–51
  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718
  • Xin Z, Wang A, Yang G, Gao P, Zheng ZL (2009) The Arabidopsis A4 subfamily of lectin receptor kinases negatively regulates abscisic acid response in seed germination. Plant Physiol 149:434–444
  • Zhao PS, Liu F, Zheng GC, Liu H (2011) Group 3 late embryogenesis abundant protein in Arabidopsis: structure, regulation, and function. Acta Physiol Plant 33:1063–1073
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.