PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 2 |
Tytuł artykułu

Growth and gas exchange response to water shortage of a maize crop on different soil types

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of water shortage on growth and gas exchange of maize grown on sandy soil (SS) and clay soil was studied. The lower soil water content in the SS during vegetative growth stages did not affect plant height, aboveground biomass, and leaf area index (LAI). LAI reduction was observed on the SS during the reproductive stage due to early leaf senescence. Canopy and leaf gas exchanges, measured by eddy correlation technique and by a portable photosynthetic system, respectively, were affected by water stress and a greater reduction in net photosynthetic rate (AN) and stomatal conductance (gs) was observed on SS. Chlorophyll and carotenoids content was not affected by water shortage in either condition. Results support two main conclusions: (1) leaf photosynthetic capacity was unaffected by water stress, and (2) maize effectively endured water shortage during the vegetative growth stage.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
31
Numer
2
Opis fizyczny
p.331-341,fig.,ref.
Twórcy
autor
  • CNR-ISAFoM, Instituto per i Sistemi Agricoli e Forestali del Mediterraneo, via Cupa Patacca, 85-80056 Ercolano, NA, Italy
  • Dipartimento di Biologia Strutturale e Funizionale, Universita degli Studi di Napoli Federico II, via Cinthia, 80126 Naples, Italy
  • CNR-ISAFoM, Instituto per i Sistemi Agricoli e Forestali del Mediterraneo, via Cupa Patacca, 85-80056 Ercolano, NA, Italy
autor
  • Dipartimento di Biologia Strutturale e Funizionale, Universita degli Studi di Napoli Federico II, via Cinthia, 80126 Naples, Italy
autor
  • Dipartimento di Biologia Strutturale e Funizionale, Universita degli Studi di Napoli Federico II, via Cinthia, 80126 Naples, Italy
autor
  • Dipartimento di Biologia Strutturale e Funizionale, Universita degli Studi di Napoli Federico II, via Cinthia, 80126 Naples, Italy
autor
  • Dipartimento di Scienze della Vita, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta, Italy
autor
  • Dipartimento di Biologia Strutturale e Funizionale, Universita degli Studi di Napoli Federico II, via Cinthia, 80126 Naples, Italy
  • Dipartimento di Biologia Strutturale e Funizionale, Universita degli Studi di Napoli Federico II, via Cinthia, 80126 Naples, Italy
autor
  • Dipartimento di Scienze della Vita, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta, Italy
autor
  • CNR-ISAFoM, Instituto per i Sistemi Agricoli e Forestali del Mediterraneo, via Cupa Patacca, 85-80056 Ercolano, NA, Italy
Bibliografia
  • Alam N, Mahub-ul Alam ANM (1985) Evapotranspiration and yield of corn as related to irrigation timing during silking. Diss Abstr Int B Sci Eng 46:1749–1750
  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell Scientific Publication, London
  • Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin P, Berbigier HP, Bernhofer C, Clement R, Elbers J, Granier A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv Ecol Res 30:113–175. doi: 10.1016/S0065-2504(08)60018-5
  • Baldocchi DD, Hicks BB, Myers TP (1988) Measuring biosphereatmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69:1331–1340. doi: 10.2307/1941631
  • Brevedan RE, Egli DB (2003) Short period of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci 43:2083–2088
  • Brodribb T (1996) Dynamics of changing intercellular CO₂ concentration (Ci) during drought and detrmination of minimum functional Ci. Plant Physiol 111:179–185
  • Bullock KDG, Anderson DS (1998) Evaluation of the minolta SPAD-502 chlorophyll meter for nitrogen management in corn. J Plant Nutr 21:741–755
  • Çakir R (2004) Effect of water stress at different development stages on vegetative and reproductive growth of corn. Crop Res 89:1–16. doi:10.1016/j.fcr.2004.01.005
  • Carmo-Silva AE, Soares AS, da Silva AB, da Silva JM, Arrabąca MC (2005) Three grasses species under water stress: same traits of C₄ photosynthesis. In: van der Est A, Bruces D (eds) Photosynthesis, fundamental aspects to global perspectives. Allen Press, Lawrence, pp 941–942
  • Castaldi S, Aragosa D (2002) Factors influencing nitrification and denitrification variability in a natural and fire-disturbed Mediterranean shrubland. Biol Fertil Soils 36:418–425. doi: 10.1007/s00374-002-0549-2
  • Cousins AB, Adam NR, Wall GW, Kimball BA Jr, Pinter PJ, Ottman MJ, Leavitt SW, Webber AN (2002) Photosystem II energy use, non-photochemical quenching and xanthophyll cycle in Sorghum bicolour grown under drought and free-air CO₂ enrichment (FACE) conditions. Plant Cell Environ 25:1551–1559. doi: 10.1046/j.1365-3040.2002.00935.x
  • Doorenbos J, Kassam AK (1979) Yield response to water. Irrigation and drainage, Paper 33. FAO, United Nations, Rome, p 176
  • Dubey RS (1997) Photosynthesis in plants under stressful conditions. In: Mohammad P (ed) Handbook of photosynthesis, University of Arizona, Tuscon, Arizona. Marcel Dekker, Inc. New York
  • Earl HJ, Davis RF (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J 95:688–696
  • El Neomani AA, El Alim AKA, El Zeynu HA, Abd El Halim AK (1990) Response of maize (Zea mays L.) to irrigation intervals under different levels of nitrogen fertilisation. Egypt J Agron 15:147–158
  • Ennahli S, Earl HJ (2005) Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Sci 45:2374–2382. doi:10.2135/cropsci2005.0147
  • Flexas J, Galmes J, Medrano H, Ribas-Carbó M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352. doi:10.1111/j.1399-3054.2006.00621.x
  • Forte A (2007) Denitrifier and nitrifier activities and N₂O fluxes of fine and coarse textured soils of a Mediterranean irrigated cropland in Southern Italy. PhD thesis, Universita` degli Studi di Napoli Federico II, Naples, Italy
  • Galmes J, Abadia A, Mediano H, Flexas J (2007) Photosynthesis and photoprotection responses to water stress in the wild-extinct plant Lysimachia minoricensis. Environ Exp Bot 60:308–317. doi:10.1016/j.envexpbot.2006.12.016
  • Hatfield JL (1983) The utilization of thermal infrared radiation measurements from grain sorghum as a method of assessing their irrigation requirements. Irrig Sci 3:259–268
  • Hirasawa T, Hsiao TC (1999) Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crops Res 62:53–63. doi:10.1016/S0378-4290(99)00005-2
  • Hirel B, Andrieu B, Valadier MH, Renard S, Quilleré I, Chelle M, Pommel B, Fournier C, Drouet JL (2005) Physiology of maize II: identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiol Plant 124:178–188. doi:10.1111/j.1399-3054.2005. 00511.x
  • Hura T, Hura K, Grzesiak M (2007) Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C₃ and C₄ plants. Acta Physiol Plant 29:103–113. doi:10.1007/s11738-006-0013-2
  • Irmak S, Haman DZ, Bastug R (2000) Corn. Determination of crop water stress index for irrigation timing and yield estimation of corn. Agron J 92:1221–1227
  • IPCC (2001) Climate changes 2001: the scientific basis. In: Houngton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of working group I in the third assessment report of intergovernmental panel on climate changes. Cambridge University Press, Cambridge
  • Isdo SB, Jackson RD, Pinter PJ, Reginato RJ, Hatfield JL (1981) Normalizing the stress-degree-day parameter for environmental variability. Agric Meteorol 24:45–55. doi:10.1016/0002-1571(81)90032-7
  • Jones JW, Zur B, Bennett JM (1986) Interactive effects of water and nitrogen stress on carbon and water vapour exchange of corn canopies. Agric For Meteorol 38:113–126. doi:10.1016/ 0168-1923(86)90053-5
  • Kolle O, Rebmann C (2007) Eddysoft-documentation of a software package to acquire and process Eddy covariance data, Technical Reports, Max-Planck-Institut fur Biogeochemie 10, p 88
  • Lai A, Edwards GE (1996) Analysis of inhibition of photosynthesis under water stress in the C₄ species Amaranthus cruentus and Zea mays: electron transport, CO₂ fixation and carboxylation capacity. Aust J Plant Physiol 23:403–412
  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO₂ concentration in the absence of drought. Plant Physiol 140:779–790. doi:10.1104/pp.105.073957
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1
  • Llorens L, Penuelas J, Estiarte M (2003) Ecophysiological response of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions. Physiol Plant 119:232–243. doi:10.1034/j.1399-3054.2003.00174.x
  • Marques da Silva L, Celeste AM (2004) Photosynthesis in the waterstressed G4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiol Plant 121:409–420. doi:10.1111/j.1399-3054.2004.00328.x
  • Medrano H, Escalona JM, Bota J, Gulías J, Flexas J (2002) Regulation of photosynthesis of C₃ plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot (Lond) 89:895–905. doi:10.1093/aob/mcf079
  • Muller JE, Whitsitt MS (1996) Plant cellular response to water deficit. Plant Growth Regul 20:41–46
  • Navari-Izzo F, Quartacci M, Pinzino C, Rascio N, Vazzana C, Sgherri CLM (2000) Protein dynamics in thylakoids of the desiccationtolerant plant Boea hygroscopica during dehydration and rehydration. Plant Physiol 124:1427–1436. doi:10.1104/pp.124.3.1427
  • NeSmith DS, Ritchie JT (1992) Short- and long-term responses of corn to a pre-anthesis soil water deficit. Agron J 84:107–113
  • Quartacci MF, Pinzino C, Sgherri CLM, Navari-Izzo F (1995) Lipid composition and protein dynamics in thylakoids of two wheat cultivars differently sensitive to drought. Plant Physiol 108:191–197
  • Reginato RJ, Garrot DJ Jr (1987) Irrigation scheduling with the crop water stress index. In: Wester Cotton Production Conference. Summary Proc., Phoenix, AZ. 18–20 August 1987. Cotton Growers Association, Memphis
  • Ritchie SW, Hanway JJ, Benson GO (1992) How a corn plant develops. Special Report No. 48. Iowa State University, p 21
  • Saccardy K, Cornic G, Brulfert J, Reyss A (1996) Effects of drought on net CO₂ uptake by Zea mays leaves. Planta 199:587–595. doi: 10.1007/BF00195191
  • Saccardy K, Pineau B, Roche O, Cornic G (1998) Photochemical efficiency of photosystem II and xanthophyll cycle components in Zea mays exposed to water stress and high light. Photosynth Res 56:57–66. doi:10.1023/A:1005921127513
  • Sanchez RA, Hall AJ, Trapani N, Chohen de Hunau R (1983) Effects of water stress on the chlorophyll content, nitrogen level and photosynthesis of leaves of two maize genotypes. Photosynth Res 4:43–47. doi:10.1007/BF00041799
  • Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveir JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56. doi:10.1016/S0098-8472(03)00059-5
  • Steduto P, Hsiao TC (1998) Maize canopy under two soil water regimes. I. Diurnal patterns of energy balance, carbon dioxide flux, and canopy conductance. Agric For Meteorol 89:169–184. doi:10.1016/S0168-1923(97)00085-3
  • Suyker AE, Verma SB, Burba GG, Arkebauer TJ, Walters DT, Hubbard KG (2004) Growing season carbon dioxide exchange in irrigated and rainfed maize. Agric Meteorol 124:1–13. doi: 10.1016/j.agrformet.2004.01.011
  • Vitale L, Di Tommasi P, Arena C, Fierro A, De Santo Virzo A, Magliulo V (2007) Effects of water stress on gas exchange of field grown Zea mays L. in Southern Italy: an analysis at canopy and leaf level. Acta Physiol Plant 29:317–326. doi: 10.1007/s11738-007-0041-6
  • von Caemmerer S, Farquhar GD (1981) Some relationship between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257
  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27:1047–1054. doi:10.1111/j.1365-3040.2004.01209.x
  • Wolfe DW, Henderson DW, Hsiao TC, Alvino A (1988) Interactive water and nitrogen effects on senescence of maize: I. Leaf area duration, nitrogen distribution, and yield. Agron J 80:859–864
  • Xianshi G, Sinclair TR, Ray JD (1998) Effects of drought history on recovery of transpiration, photosynthesis, and leaf area development in maize. Soil Crop Sci Soc Fla Proc 57:83–87
  • Xu ZZ, Zhou GS (2006) Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. J Plant Growth Regul 25:252–266. doi:10.1007/s00344-006-0043-4
  • Xu ZZ, Zhou GS, Li H (2004) Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature. J Environ Sci (China) 16:666–669
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-debf3504-077b-4c87-88c3-85f7ba941003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.