PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 1 |

Tytuł artykułu

Thermodynamic properties of water sorption isotherms of grape seed

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study the moisture sorption isotherm of grape seed was determined by using a static gravimetric method at 35-65°C and 0.108-0.821 water activity range. The sorption isotherms were found to be typical sigmoid shape of most food materials. Five models including the Brunauer-Emmett-Teller (2-parameter), Guggenheim, Anderson and De Boer (3-parameter), Oswin (2-parameter), Ferro-Fontan (3-parameter) and Peleg (4-parameter) models were considered to fit the experimental data. The Ferro- Fontan and Peleg equations (at three temperatures 35, 45, 65°C) having R2 greater than 0.97 and lower values of standard error of estimate and deviation modulus gave the best fit of the experimental data throughout the entire range of water activity. The net isosteric heat of sorption, calculated by Calusius-Clapeyron equation on experimental data, was found to be a polynomial and exponential function of equilibrium moisture content within the temperature range investigated.

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.63-71,fig.,ref.

Twórcy

autor
  • Department of Mechanics of Farm Machinery, School of Agriculture, Shiraz University, Shiraz, Iran
  • Department of Mechanics of Farm Machinery, School of Agriculture, Shiraz University, Shiraz, Iran
autor
  • Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
autor
  • Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran

Bibliografia

  • Al-Muhtaseb A.H., McMinn W.A.M., and Magee T.R.A, 2004. Water sorption isotherms of starch powders. Part 1: Mathematical description of experimental data. J. Food Eng., 61, 297-307.
  • Amiri-Chayjan R. and Esna-Ashari M., 2010. Comparison between mathematical models and artificial neural networks for prediction of sorption isotherm in rough ric. Int. Agrophys., 24, 1-7.
  • Ansari S., Farahnaky A., Majzoobi M., and Badii F., 2011. Modeling the effect of glucose syrup on the moisture sorption isotherm of figs. Food Biophys., 6(3), 377-389.
  • Arslan N. and Togrul H., 2006. The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity. J. Stored Prod. Res., 42(2), 112-135.
  • Aviara N.A. and Ajibola O.O., 2002. Thermodynamics of moisture sorption in melon seed and cassava. J. Food Eng., 55, 107-113.
  • Aviara N.A., Ajibola O.O., Aregbesola O.A., and Adedeji M.A., 2006. Moisture sorption isotherms of sorghum malt at 40 and 50°C. J. Stored Prod. Res., 42, 290-301. 70 K. MALEKI MAJD et al.
  • Fig. 4. Isosteric heat of sorption of grape seed as a function of EMC obtained using linear regression between ln(q) and EMC.
  • Bianco A.M., Boente G., Pollio M.L., and Resnik S.L., 2001. Influence of oil content on sorption isotherm of four verieties of peanut at 25_C. J. Food Eng., 47, 327-331.
  • Campos L.M.A.S., Leimann F.V., Pedrosa R.C., and Ferreira S.R.S., 2008. Free radical scavenging of grape pomace extracts from Cabernet Sauvingnon (Vitis vinifera). Bioresource Tech., 99, 8413-8420.
  • Chowdhury M.M.I., Huda M.D., Hossain M.A., and Hassan M.S., 2006. Moisture sorption isotherms for mungbean (Vigna radiata L). J. Food Eng., 74, 462-467.
  • Ethmane C.S., Kane M., Kouhila A., Lamharrar A., Idlimam A., and Mimet A., 2008. Moisture sorption isotherms and thermodynamic properties of tow mints: Mentha pulegium and Mentha rotundifolia. Rev. Energ. Renouv., 11, 181-195. FAO, 2009. Statistical Database. Available from: <http://www.fao.org>.
  • Falade K.O. and Aworh O.C., 2004. Adsorption isotherms of mosmooven dried African star apple (Chrysophyllum albidum) and African mango (Irvingia gabonensis) slices. Eur. Food Res. Technol., 218, 278-83.
  • Foster K.D., Bronlund J.E., and Paterson A.H.J., 2005. The mprediction of moisture sorption isotherms for dairy powders. Int. Dairy J., 15, 411-418.
  • García-Pérez J.V., Cárcel J.A.,ClementeG., andMulet A., 2008. Water sorption isotherms for lemon peel at different temperatures and isosteric heats.LWTFood Sci. Technol., 41(1), 18-25.
  • Goula A.M., Karapantsios T.D., Achilias D.S., and Adamopoulos K.G., 2008.Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J. Food Eng., 85, 73-83.
  • Hassan B.H., 2000. Moisture sorption characteristics of dried date powder. J. King Saud Univ., 14, 105-12.
  • JamaliA., Kouhila M.,Mohamed L.A, Idlimam A., and Lamharrar L., 2006. Moisture adsorption-desorption isotherms of Citrus reticulate leaves at three temperatures. J. Food Eng., 77, 71-78.
  • Jayendra Kumar A., Singh R.R.B., Patil G.R., and Patel A.A., 2005. Effect of temperature on moisture desorption isotherms of kheer, LWT Food Sci. Technol., 38, 303-310.
  • Kaymak-Ertekin F. and Gedik A., 2004. Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT Food Sci. Technol., 37, 429-38.
  • Labuza T.P., Kaanane A., and Chen J.Y., 1985. Effect of temperature on the water adsorption isotherms of two dehydrated foods. J. Food Sci., 50, 385-391.
  • Mulet A., García-Pascual P., Sanjuán N., and García-Reverter J., 2002. Equilibrium isotherms and isosteric heats of morel (Morchela esculenta). J. Food Eng., 53, 75-81.
  • Rizvi S.S.H., 2005. Thermodynamic properties of foods in dehydration. In: Engineering Properties of Foods (Eds A. Rao, S.S.H. Rizvi, A.K. Datta).CRCPress, Boca Raton, FL,USA.
  • Roman G.N., Urbicain M.J., and Rotstein E., 1982. Moisture equilibrium in apples at several temperatures: experimental data and theoretical consideration. J. Food Sci., 44, 1484-1488.
  • Timmermann E.O., Chirife J., and Iglesias H.A., 2001. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? J. Food Eng., 48, 19-31.
  • Togrul H. and Arslan N., 2007. Moisture sorption isotherms and thermodynamic properties of walnut kernels. J. Stored Prod. Res., 43, 252-264.
  • Tolba M.P., Pletzer M., Enriquez N., and Pollio M.L., 2004. Grain sorption equilibria of quinoa grains. J. Food Eng., 61, 365-371.
  • Tsami E., Maroulis Z.B.,Marinos-Kouris D., and Saravacos G.D., 1990. Heat sorption of water in dried fruits. Int. J. Food Sci. Technol., 25, 350-363.
  • Van den Berg C. and Bruin S., 1981. Water activity and its estimation in food systems: theoretical aspects. In: Wateractivity: Influences on food quality (Eds L.B. Rockland,G.F. Steward). Academic Press, New York, USA.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-de9e7e81-ba1b-42a0-aa9c-5e3c8b8d42df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.