Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 1 |
Tytuł artykułu

Sorptive interaction of oxyanions with Iron oxides: A review

Warianty tytułu
Języki publikacji
Iron oxides are a group of minerals composed of Fe together with O and/or OH. They have high points of zero charge, making them positively charged over most soil pH ranges. Iron oxides also have relatively high surface areas and a high density of surface functional groups for ligand exchange reactions. In recent time, many studies have been undertaken on the use of iron oxides to remove harmful oxyanions such as chromate, arsenate, phosphate, and vanadate, etc., from aqueous solutions and contaminated waters via surface adsorption on the iron oxide surface structure. This review article provides an overview of synthesis methods, characterization, and sorption behaviours of different iron oxides with various oxyanions. The influence of thermodynamic and kinetic parameters on the adsorption process is appraised.
Słowa kluczowe
Opis fizyczny
  • Department of Chemistry, University of Ilorin P.M.B. 1515, Ilorin, Nigeria
  • Department of Chemistry, University of Ilorin P.M.B. 1515, Ilorin, Nigeria
  • Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, South Africa
  • Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, South Africa
  • 1. SCHWERTMANN U., AND CORNELL R.M Iron oxide in the laboratory: preparation and characterization. Wiley-VCH Weinheim, Germany, pp. 1-132, 1991.
  • 2. CORNELL R.M., SCHWERTMANN U. The iron oxides: structures, properties, reactions, occurrences and uses. Wiley VCH, 2003.
  • 3. TEJA A.S., KOH P.Y. Prog crystal Growth Charact. Mater. 55, 22, 2009.
  • 4. MAHMOUDI M., SIMCHI S., IMANI M. Recent advances in surface engineering of superparamagnetic iron oxide nanoparticles for biomedical application J. Iran Chem. Soc. 7, S1, 2010.
  • 5. WANG G., LIU T., LUO Y., ZHAO Y., REN Z., BAI J., WANG H. Preparation of Fe₂O₃/graphene composite and its electrochemical performance as an anode material for lithium ion batteries. J. Alloy. Compd. 2011.
  • 6. SINGH J., SRIVASTAVA M., DUTTA J., DUTTA P.K. Preparation and properties of hybrid monodispersed magnetic α-Fe₂O₃ based chitosan nanocomposite film for industrial and biomedical applications. Int. J. Biol. Macromol. 48, 170, 2011.
  • 7. HASSAN M.F., GUO Z., CHEN Z., LIU H. α-Fe₂O₃ as an anode material with capacity rise and high rate capability for lithium-ion batteries. Mater. Res. Bull. 46, 858, 2011.
  • 8. GUPTA A. K., GUPTA M. Synthesis and Surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, (18), 3995, 2005.
  • 9. MIMURA N., TAKAHARA I., SAITO M., HATTORI T., OKHUMA K., ANDO M. Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide. Catal. Today 45, 61, 1998.
  • 10. CHANG J., PARK S., PARK M. Chem. Lett 11, 1123, 1997. In: WANG X., CHEN X., MA X., ZHENG H., JI M. ZHANG Z. Low-temperature synthesis of α-Fe₂O₃ nanoparticles with a closed cage structure. Chem. Phys. Lett. 384, 391, 2004.
  • 11. TURNER J., HENDEWERK M., PARMETER J., NEIMAN D., SOMORJAL G. J. Electrochem. Soc. 131, 177, 1984. In: WANG X., CHEN X., MA X., ZHENG H., JI M. ZHANG Z. Low-temperature synthesis of α-Fe₂O₃ nanoparticles with a closed cage structure. Chem. Phys. Lett 384, 391, 2004.
  • 12. LINDGREN L., WANG H., BEERMANN N., VAYSSIERES L., HAGFELDT A., LINGUIST S. Sol. Energ. Mat. Sol. C. 71, 231, 2002.
  • 13. PENG X., QIAN X., MAO H., WANG A. Y., CHEN Z., NIE S., SHIN D. M. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomedicine. 3, (3), 311, 2008.
  • 14. YU M., PARK J., JEONG Y. Y., MOON W. K., JON S. Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery. Nanotechnology 21, (41), 2010.
  • 15. GHOSE S.K., PETITTO S.C, TANWAR K.S., LO C. S., ENG P.J., CHAKA A. M. TRAINOR T. P. Surface Structure and Reactivity of Iron oxides-Water interfaces. Dev. In Earth and Environ. Sciences. 7, 2008.
  • 16. SORESCU M., MIHAILA-TARABASANU D., DIAMONDESCU L. Mossbauer and Magnetic study of substituted Magnetites. Appl. Phys. Lett. 72, 2047, 1998.
  • 17. SYLVA R. M. The hydrolysis of Iron (III) Rev. Pure Appl. Chem. 22, 115, 1972.
  • 18. MATIJEVIC E., SCHEINER P. Ferric hydrous Oxide sols. III Preparation of Uniform particles by hydrolysis of Fe (III) chloride-nitrate and perchlorate solutions. J. Colloid Interface Sci. 63, 509, 1978.
  • 19. OZAKI, M. KRATHVIL S., MATIJEVIC E. Formation of monodispersed spindle type hematite particles. J. Colloid interface Sci. 102, 146, 1984.
  • 20. RAMMING T.P., WINNUBST A.J.A., VAN KATS C.M., PHILPSE A. P. The Synthesis and magnetic Properties of Nanosized Hematite (α-Fe₂O₃) particles. J. Colloid Interf. Sci. 249, 346, 2002.
  • 21. QIN W., YANG C., YI R., GAO G. Hydrothermal Synthesis and Characterization of Single-Crystalline α-Fe₂O₃ Nanocubes. J. Nanomaterials 2011.
  • 22. FEITKNECHT W., MICHAELIS W. On the hydrolysis of Iron (III) perchlorate solution Chem. Acta 45, 212, 1962.
  • 23. SCHWERTMAN U, FISCHER W. R. The preparation of α-FeOOH and α-Fe₂O₃ from amorphous iron (III) hydroxide. J. of Inorganic and General Chemistry. 346, 137, 1966.
  • 24. CORNELL R. M., GIOVANOLI R., SCHINEIDER W. Review of the hydrolysis of iron (III) and the crystallization of amorphous iron (III) hydroxide hydrate. J. Chem. Technol. Biotechnol. 46, 115, 1989.
  • 25. SCHWERTMANN U., MURAD E. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clay. Clay Miner. 31, 277, 1983.
  • 26. FEITKNECHT W. On the oxidation of hydroxyl compounds of iron in aqueous solutions. J. Electrochem. 63, 34, 1959.
  • 27. SCHWERTMAN U. The synthesis of defined iron oxides under different conditions. J. of Inorganic and General Chem. 298, 337, 1959.
  • 28. HIEMSTRA T., DE WIT J. C. M., VAN RIEMSDIJK W.H. Multisite Proton Adsorption Modeling at the solid/solution Interface of Hydr(oxides): A New Approach. J. Colloid and Interface Sci. 133, (1) 91, 1989.
  • 29. MACKAY A. L. Some aspects of the topochemistry of the iron oxides and hydroxide. In: J. H. de Boer (Ed.) Reactivity of Solids. Proc. 4th Intern. Symposium on reactivity of solids, 571, 1961.
  • 30. SAPIESKO R. S., MATIJEVIC E. Preparation of welldefined colloidal particles of thermal decomposition of metal chelates. I. Iron oxides. J. colloid interface Sci. 74, 405, 1980.
  • 31. DUHAN S., DEVI S. Synthesis and Structural characterization of Iron oxide-silica nanoparticles Prepared by the solgel method. Int. j of Electronics Eng. 2, (1), 89, 2010.
  • 32. GONG C., CHEN D., JIAO X. WANG Q. Continuous hollow α-Fe₂O₃ and α-Fe fibers prepared by sol-gel method, J. of Materials Chemistry 12, (6), 1844, 2002.
  • 33. HOLLAND H., YAMAURA M. Synthesis of Magnetite Nanoparticles by microwave irradiation and characterization. Seventh Internat. Latin American Conference on Powder technol. (PTECH) 2009.
  • 34. PARSONS J.G., LUNA C., BOTEZ C.E., ELIZALDE J., GARDEA-TORRESDEY J.L. Microwave-assisted synthesis of iron (III) oxyhydroxides/oxides characterized using transmission electron microscopy, X-ray diffraction and Xray absorption spectroscopy. J. Phys. Chem. Solids 70, 555, 2009.
  • 35. NI Y., GE X., ZHANG Z., YE Q. Fabrication and Characterization of plate-shaped γ-Fe₂O₃ nanocrystals. Chemistry of Materials 14, (3), 1048, 2002.
  • 36. WILSON M.J. A handbook of determinative methods in clay mineralogy. Blakie, Glasgow and London pp. 308, 1987.
  • 37. KOSMULSKI M., MACZKA E., JARTYCH E. ROSENHOLM J.B. Synthesis and characterization of goethite and goethite-hematite composite: experimental study and literature survey. Adv. Colloid and Interface Sci. 103, 57, 2003.
  • 38. GRAFE M., EICK M.J, GROSS P.R. Adsorption of Arsenate and Arsenite on Goethite in the presence and absence dissolved carbon dioxide. Soil Sci. Am. J. 65, 1680, 2001.
  • 39. MORAIS F. I., PAGE A. L., LUND L. J. The Effect of pH Salt Concentration and Nature of Electrolytes on the Charge Characteristics of Brazilian Tropical Soils. Soil Sci, Soc. Am. J. 40, 521, 1976.
  • 40. PARKS G. A., DE BRUYN P. L. The Zero Point of Charge of Oxides. J. Phys. Chem. 66, 967, 1961.
  • 41. BOURIKAS K., KORDULIS C., LYCOUGHIOTIS A. Differential Potentiometric Titration: Development of a Methodology for determining the point of zero charge of metal (hydr)oxides by one Titration curve. Environ. Sci. Technol. 39, 4100, 2005.
  • 42. KOSMULSKI M. The pH-dependent surface charging and the points of zero charge. J. Colloid Interf. Sci. 253, 77, 2002.
  • 43. KOSMULSKI M. pH-Dependent Surface Charging and Points of Zero charge III. Update. J. Colloid Interf. Sci. 1, (50), 1, 2006.
  • 44. PAN P. Z., SOMASUNDARAN P., TURRO N. J. JOCKUSCH S. Interactions of cationic dendrimers with hematite mineral. Colloid. Surfface. A 238, 123, 2004.
  • 45. KIRWAN L. J., FAWELL P. D., VAN BRONSWIJK W. An in-situ FTIT-ATR study of polyacrylate adsorbed onto hematite at high pH and high ionic strength Langmuir 20, 4093, 2004.
  • 46. DAS M. R., BORDOLOI D., BORTHAKUR P. C., MAHIUDDIN S. Kinetics and adsorption of benzoate and saliylate at the natural-water interface. Colloid. Surface A 254, 49, 2004.
  • 47. ADDAI MENSAH J., RALSTON J. Interfacial chemistry and particle interactions and their impact upon the dewatering behaviour of iron oxide dispersions. Hydrometallurgy 74, (3-4), 221, 2004.
  • 48. PEACOCK C.L., SHERMAN D. M. Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy Geochim Cosmochim Acta 68, 2623, 2004.
  • 49. CHIBOWSKI S., PATKOWSKI J. OPALA-MAZUR E. Adsorption of Commercial, Filtrated and Fractionated Polyethylene Oxide on Hematite Mater. Chem. Phys. 92, 519, 2005.
  • 50. JARLBRING M., GUNNERIUSSON L., HUSSMANN B. FORSLING W. Surface complex characteristics of synthetic maghemite and hematite in aqueous suspensions J. Colloid Interf. Sci. 285, 212, 2005.
  • 51. FAN M., BOONFUENG T., XU Y., AXE L., TYSON T. A. Modeling Pb Sorption to Microporous Amorphous Oxides as Discrete Particles and Coatings J. Colloid Interf. Sci. 281, 39, 2005.
  • 52. KRELLER D. I., GIBSON G., VAN LOON G.W. HORTON J.H. Chemical force microscopy investigation of phosphate adsorption on the surfaces of hydrous ferric oxide particles J. Colloid Interf. Sci. 254, 205, 2002.
  • 53. DAVRANCHE M., POURRET O., GRUAU G., DIA A. Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide. J. Colloid Interf. Sci. 277, 271, 2004.
  • 54. PEACOCK C. L., SHERMAN D.M. Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Ac. 68, 1723, 2004.
  • 55. SAITO T., KOOPAL L. K., VAN RIEMSDIJK W.H, NAGASAKI S., TANAKA S. Adsorption of humic acid on goethite: Isotherms, charge adjustments, and potential profiles. Langmuir 20, 689, 2004.
  • 56. VARANDA L.C., MORALES M. P., GOYA G. F., IMAIZUMI M., SERNA C.J., JAFELICCI M. Magnetic properties of acicular Fe1-xREx (RE = Nd, Sm, Eu, Tb; x = 0, 0.05, 0.10) metallic nanoparticles. Mater. Sci. Eng. B 112, 188, 2004.
  • 57. BOILY J. F., SJOBERG S., PERSSON P. Structures and Stabilities of Cd(II) and Cd(II)-Phthalate Complexes at the Goethite/Water Interface. Geochim. Cosmochim. Ac. 69, 3219, 2005.
  • 58. JUANG R.S., CHUNG J.Y. Equilibrium sorption of heavy metals and phosphate from single- and binary-sorbate solutions on goethite. J. Colloid Interf. Sci. 275, 53, b.
  • 59. XU Y., AXE L. Synthesis and Characterization of Iron Oxide-Coated Silica and Its Effect on Metal Adsorption. J. Colloid Interf. Sci. 282, 11, 2005.
  • 60. ANTELO J., ARENA A., FIOL S., LOPEZ R. ARCE F. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface J. Colloid Interf. Sci. 285, 476, 2005.
  • 61. NIELSON U. G., PAIK Y., JULMIS K., SCHOONEN M. A. A., REEDER R.J. GREY C. Investigating Sorption on Iron-Oxyhydroxide Soil Minerals by Solid-State NMR Spectroscopy: A 6Li MAS NMR Study of Adsorption and Absorption on Goethite J. Phys. Chem. B. 109, 310, 2005.
  • 62. WANG X., CHEN X., MA X., ZHENG H., JI M. ZHANG Z. Low-temperature synthesis of α-Fe₂O₃ nanoparticles with a closed cage structure. Chem. Phys. Lett. 384, 391, 2004.
  • 63. YU W., HUI L. Preparation of Nano-needle Hematite particles in solution. Mat. Res. Bull. 34, (8) 1227, 1999.
  • 64. LI Y., LIAO H., QIAN Y. Hydrothermal synthesis of ultrafine α Fe₂O₃ and Fe304 powders Mat. Res. Bull. 33, (6), 841, 1998.
  • 65. SORESCU M., BRAND R.A, MIHAILA- TARABASANU D., DIAMANDESCU L. Synthesis and magnetic properties of hematite with different particle morphologies. J. Alloy. Compd. 280, 273, 1998.
  • 66. SCHWERTMANN U., MURAD E. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clay. Clay. Miner. 31, 277, 1983.
  • 67. YASUHIRO K., TAKESHI K. SATORU A. Preparation and Properties of fine hematite powders by hydrolysis of iron carboxylate solutions. Metall. Mater. Trans. B, 25, (2) 165, 1994.
  • 68. KANDORI K., YAMAMOTO N., YASUKAWA A. ISHIKAWA T. Preparation and characterization of disk-shaped hematite particles by a forced hydrolysis reaction in the presence of polyvinyl alcohol Phys. Chem. Chem. Phys 4, 6116, 2002.
  • 69. GEE S. H., HONG Y. K, SUR J. C., ERICKSON D. W., PARK M. H. JEFFERS F. Spin orientation of hematite (α-Fe₂O₃) nanoparticles during the Morin transition. IEEE Transaction on magnetic 40, (4), 2004.
  • 70. PASCAL C., PASCAL J., FAVIER F., ELIDRISSI M., PAYEN C. Electrochemical synthesis for the control of γ-Fe₂O₃ nanoparticle size.Morphology, microstructure and magnetic behaviour. Chem. Mater. 11, 144, 1999.
  • 71. FU Y., CHEN J., ZHANG H. Phys. Lett. 350, 491, 2001.In: ZHANG X., HAN Q., DONG Z., XU Y., ZHANG H. Thermal stability of Fe₂O₃ Nanowires. J. Mater Sci. 24, (4), 1, 2008.
  • 72. FU Y., WANG R., XU J., CHEN J., YUN Y. NARLIKAN A., ZHANG H. ‘Chem. Phys.Lett. 379, 373, 2003. In: ZHANG X., HAN Q., DONG Z., XU Y., ZHANG H. Thermal stability of Fe₂O₃ Nanowires. J. Mater Sci. 24, (4), 1, 2008.
  • 73. GALVEZ N., BARRON V., TORRENT J. Preparation and properties of hematite with structural phosphorus. Clays and Clays Mineral 47, (3), 375, 1999.
  • 74. GREENWOOD N., EARNSHAW A., Chemistry of the Elements 2nd ed.; Oxford: Butterworth-Heinemann, 1997.
  • 75. MUELLER U. Inorganic Structural Chemistry. 1993.
  • 76. PULS R. W., PAU L, POWELL R.M. The application of insitu permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated ground water: a field test. Appl. Geochim. 14, (8), 989, 1999.
  • 77. EPA Proven treatment alternatives for above ground treatment of arsenic in ground water. Engineering Forum Issues Paper, EPA 542-S-02-002. U.S Environmental Protection Agency, Washington, DC 2002.
  • 78. EPA Perchlorate treatment technology update, Federal Facilities Forum Issue Paper, EPA 542 R-05-015. U.S Environmental Protection Agency, Washington, DC. 01/download/remed/542-R-05- 015.pdf 2005.
  • 79. DOHERTY R., PHILIPS D. H., MCGEOUGH K.L., WALSH K.P., KALIN R. M. Development of modified flyash as a permeable reactive barrier medium for a former manufactured gas plant site. Northern Ireland. Environ. Geol. 50, (1), 37, 2006.
  • 80. ITRC Perchlorate: Overview of issues, status and remedial options. Interstate Technology and Regulatory Council, Washington, DC. sweti)1/download/ remed/542-R-05-015.pdf 2005.
  • 81. MOTZER W.E. Perchlorate: problems, detection and solutions. Environ. Forensics 2, (4), 301, 2001.
  • 82. URBANSKY E.T., BROWN S. K. Perchlorate retention and mobility in soils. J. Environ. Monitor. 5, 455, 2003.
  • 83. TRAN H.H., RODDICK F.A., O’DONNELL J. A. Comparison of chromatography and dessicant silica gels for the adsorption of metal ions- I. Adsorption and kinetics. Water Res. 33, 2992, 1999.
  • 84. MOHANTY K., DAS D., BISWAS M.N. Preparation and characterization of activated carbon from Steculia alata nutshell by chemical activation with zinc chloride to remove phenol from waste water. Adsorption 12, 119, 2006.
  • 85. GIMENENZ J., MARTINEZ M., PAPLO J., ROVIRA M., DURO L. Arsenic sorption onto natural hematite. Magnetite and goethite. J. Hazard. Mater. 141, (3), 575, 2007.
  • 86. ONA-NGUEMA G., MORIN G., JUILLOT F., CALAS G., BROWN JR G.E. EXAFS Analysis of Arsenite Adsorption onto Two-line Ferrihydrite, Hematite, Goethite and Lepidocrocite. Environ. Sci. Techol. 39, 9147, 2005.
  • 87. FENDORF S., EICK M.J, SPARKS D.L. Arsenate and chromate Retention mechanisms on Goethite I. Surface structure. Environ Sci. Technol 32, (2), 315, 1997.
  • 88. DING M., DE JONG , B.H. W.S, ROOSENDAAL S.J., VREDENBERG A. XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, Pb²⁺ and Zn²⁺ ions on amorphous black ferric oxyhydroxide. Geochim cosmochim. Acta. 64, (7), 1209, 2007.
  • 89. WEERASOORIYA R., TOBSCHALL H.J. Mechanistic modeling of chromate adsorption onto goethite. Colloid. Surface A 162, (1-3), 167, 2000.
  • 90. FOSTER-MILLS N.S, AMONETTE J.E, WILLIAM B.K., TAYLOR A.E. Competitive-Trace-level sorption of chromate and phosphate to Hematite surfaces: A spectroscopic Approach. Environ. Dynamic and simulation Annual report pp. 4, 1999.
  • 91. SMITH E., GHIASSI K. Chromate removal by an iron sorbent: mechanism and modeling. Water Environ. Res 78, (1), 84, 2006.
  • 92. PEACOCK L. C., SHERMAN D. M. VANADIUM (V) Adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: A Surface Complexation model based on ab initio molecular geometries and EXAFS Spectroscopy. Geochim. Cosmochim. Ac. 68, (81), 1723, 2004.
  • 93. NAEEM A., WESTERHOFF P., MUSTAPHA S. Vanadium Removal by Metal (hydr) oxide Adsorbents. Water Res. 41, 5196, 2007.
  • 94. O’REILLY S. E., STRAWN D. G., SPARKS D. L. Residence Time Effects on Arsenate Adsorption/Desorption Mechanisms on Goethite. Soil Sci. Soc. Am. J. 65, 67, 2001.
  • 95. LUMSDON D. G., FRASER A.R., RUSSELL J.D., LIVESEY N.T. New Infrared band assignments for the arsenate ion adsorbed on synthetic goethite (α-FeOOH). J. Soil Sci. 35, 381, 1984.
  • 96. GROSSL P. R., EICK M., SPARKS D. L., GOLDBERG S., AINSWORTH C. C. Arsenate and Chromate Retention Mechanisms on goethite 2. kinetic evaluation using a pressure jump relation technique. Environ. Sci. Technol. 31, 321, 1997.
  • 97. WAYCHUNAS G. A., REA B. A., FULLER C.C., DAVIS J. A. Surface Chemistry of Ferrihydrite: Part 1 EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57, 2251, 1993.
  • 98. MANCEAU A. The Mechanisms of anion adsorption on iron oxides: Evidence for the binding of arsenate tetrahedral on free Fe(O, OH)6 edges. Geochim. Cosmochim Ac. 59, 3647, 1995.
  • 99. CARABANTE I., GRAHN M., HOLMGREN A., KUMPIENE J., HEDLUND J. Adsorption of As (V) on iron oxide nanoparticle films studied by in situ ATR-FTIR Spectroscopy. Colloids and Sufaces Eng. Aspects. 346, 106, 2009.
  • 100. BORGGAARD O. K., RABEN-LANGE B., GIMSING A. L., STROBEL B. W. Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma 127, (3-4), 270, 2008.
  • 101. STREAT M., HELLGARDT K., NEWTON N.L. R. Hydrous ferric oxide as an adsorbent in water treatment Part 2. Adsorption studies. Process Safety Environ. Protection 86, 11, 2008.
  • 102. SIMEONIDIS K., TRESINTSI S. , MARTINEZ-BOUBETA C., VOURLIAS G., TSIAOUSSIS I., STAVROPOULOS G., MITRAKAS M., ANGELAKERIS M. Magnetic separation of hematite coated Fe₃O₄ particles used as arsenic adsorbents. Chem. Eng. J. 168, 1008, 2011.
  • 103. NAMDEO M., BAJPAI S. K. Investigation of hexavalentchromium uptake by synthetic magnetite nanoparticles. Elec. J. Environ. Agric. And Food Chemistry 7, (7), 3082, 2008.
  • 104. AJOUYED O., HUREL C., AMMARI M., BEN ALLAL L., MARMIER N. Sorption of Cr (VI) onto natural iron and aluminium (oxy) hydroxides: Effects of pH, ionic strength and initial concentration. J. Hazard. Mater. 174, 616, 2010.
  • 105. SINGH D. B., GUPTA G.S., PRASAD G., RUPAINWAR D. C. The Use of hematite for chromium (VI) removal. J. Environ. Sci. Health A 28, (8), 1813, 1993.
  • 106. BAJPAI S.K., ARMO M.K. Equilibrium Sorption of hexavalent Chromium from aqueous solution using iron (III) loaded chitosan-magnetite nanocomposites as novel sorbent. J. Macromolecular Sci. Part A: Pure and Appl. Chemistry 46, 510, 2009.
  • 107. ZHAO D., WANG X., YANG S., GUO Z., SHENG G. Impact of water quality parameters on the sorption of U (VI) onto hematite. J. Environ. Radioactiv. 103, 20, 2012.
  • 108. LEFEVRE G., NOINVILLE S., FEDOROFF M. Study of Uranyl sorption onto hematite by in situ attenuated total reflectance-infrared spectroscopy. J. Colloid Interf. Sci. 296, 608, 2006.
  • 109. VAUGHAN JR R. L., REED B.E. Modelling As(V) removal by iron oxide impregnated activated carbon using the surface complexation approach. Water Res. 39, 1005, 2005.
  • 110. KENDELWICZ T., LIU P., DOYLE C. S., BROWN Jr G. E. Spectroscopic study of the reaction of aqueous Cr (VI) with Fe3O4 (I I I) surfaces. Surface Sci. 469, 144, 2000.
  • 111. LENOBLE V., BOURAS O., DELUCHAT V., SERPAUD B., BOLLINGER JC. Arsenic Adsorption onto pillared clays and iron oxides. J. Colloid Interf. Sci. 225, 52, 2002.
  • 112. GAO Y., MUCCI A. Individual and Competitive adsorption of phosphate and arsenate on goethite in artificial sea water. Chem. Geol. 199, 91, 2003.
  • 113. SHERMAN D. M., RANDALL S. R. Surface complexation of arsenic (V) to iron (III) (hydr)oxides: Structural mechanism from ab initio geometries and EXAFS spectroscopy. Geochim. Cosmochim. Ac. 67, (2), 4223, 2003.
  • 114. DELIYANNI E. A., BAKOYANNAKIS D. N., ZOUBOULIS A. I., MATIS K. A. Sorption of As(V) ions by akaganeite-type nanocrystals. Chemosphere 50, 155, 2003.
  • 115. DUC M., LEFEVRE G., FEDOROFF M., JEANJEAN J., ROUCHAUD J.C., MONTEIL-RIVERA F., DUMONCEAU J., MILONJIC S. Sorption of anionic species on apatites and iron oxides from aqueous solution. J. Environ. Radioactiv. 70, 61, 2003.
  • 116. REGENSPURG S., PEIFFER S. Arsenate and Chromate incorporation in schwertmannite. Appl. Geochem. 20, 1226, 2005.
  • 117. LAKSHMIPATHIRAJ P., NARASIMHAN B.R. V., PRABHAKAR S., BHASKAR RAJU G. Adsorption of arsenate on synthetic goethite from aqueous solutions. J. Hazard. Mater. B 136, 281, 2006.
  • 118. LAKSHMIPATHIRAJ P., NARASIMHAN B.R. V., PRABHAKAR S., BHASKAR RAJU G. Adsorption studies of arsenic on Mn-substituted iron oxide. J. Colloid Interf. Sci. 304, 317, 2006.
  • 119. JIA Y., XU L., WANG X., DEMOPOULOS G.P. Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim. Cosmochim. Ac. 71, 1643, 2007.
  • 120. LUENGO C., BRIGANTE M., AVENA M. Adsorption kinetics of phosphate and arsenate on goethite: A comparative study. J. Colloid Interf. Sci. 311, 354, 2007.
  • 121. ZENG H., ARASHIRO M., GIAMMAR D.E. Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent. Water Res. 42, 4629, 2008.
  • 122. YIN S., ELLIS D. E. DFT studies of Cr (VI) Complex adsorption on hydroxylated hematite (1102) surfaces. Surf. Sci. 603, 736, 2009.
  • 123. MAMINDY-PAJANY Y., HUREL C., MARMIER N. ROMEO M. Arsenic adsorption onto hematite and goethite. C.R. Chimie 12, 876, 2009.
  • 124. MULLER K., CIMINELLI V.S. T., SYLVA M. DANTAS S. A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Research 44, 5660, 2010.
  • 125. YUSAN S.D., ERENTURK S. A. Sorption behaviours of uranium (VI) ions on α-FeOOH. Desalination 269, 58, 2011.
  • 126. MAMINDY-PAJANY Y., HUREL C., MARMIER N., ROMEO M. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination 281, 93, 2011.
  • 127. ZHU J., PIGNA M., COZZOLINO V., CAPORALE A. G., VIOLANTE A. Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands. J. Hazard. Mater. 189, 564, 2011.
  • 128. LUTHER S., BORGFELD N., KIM J., PARSONS J.G. Removal of arsenic from aqueous solution: A study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchemical J. Microc-01452(7pages). 2011.
  • 129. ZHANG Y., YANG M., HUANG X. Arsenic (V) removal with a Ce(IV) – doped iron oxide adsorbent. Chemosphere 51, 945, 2003.
  • 130. HLAVAY J., POLYAK K., Determination of surface properties of iron hydroxide – coated alumina adsorbent prepared for removal of arsenic from drinking water. J. Colloid Interf. Sci. 284, 71, 2005.
  • 131. KUNDU S., GUPTA A. K., Adsorption characteristics of As (III) from aqueous solution on iron oxide coated cement (IOCC). J. Hazard. Matter. 142, 97, 2007.
  • 132. CHOWDHURY S.R., YANFUL E.K. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J. Environ. Manage. 91, 2238, 2010.
  • 133. WAINIPEE W., WEISS D. J., SEPHTON M.A., COLES B.J., UNSWORTH C. and COURT R. The effect of crude oil on arsenate adsorption on goethite Water Res. 44, 5673, 2010.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.