Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 09 | 1 |
Tytuł artykułu

Good DNA from bat droppings

Warianty tytułu
Języki publikacji
Amplification of a mitochondrial DNA fragment was used to compare the efficiency of five methods for extracting DNA from bat droppings. The Qiagen DNA Stool Kit, which yielded > 90% mtDNA amplification success, was chosen to extract DNA from 586 samples taken over two years in three French colonies of the lesser horseshoe bat (Rhinolophus hipposideros). Samples, for which mtDNA amplification was successful, were subject to the multiplex amplification of eight microsatellite loci. This resulted in > 95% amplification success over 12,592 PCRs. Allelic dropout (ADO) and false allele (FA) rates were low, and consequently, sample and locus quality indexes (QI) were high. These results demonstrate that large scale noninvasive studies of bat colonies are possible.
Opis fizyczny
  • Ethologie Evolution Ecologie, UMR CNRS 6552, Universite de Rennes I, Station Biologique, 35380 Paimpont, France
  • 1. S. C. Banks, S. Hoyle, D. Horsup, P. Sunnucks, and A. C. Taylor . 2003. Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material. Animal Conservation 6:1–10. Google Scholar
  • 2. T. Broquet and E. Petit . 2004. Quantifying genotyping errors in noninvasive population genetics. Molecular Ecology 13:3601–3608. Google Scholar
  • 3. T. Broquet, N. Ménard, and E. Petit . 2007. Non-invasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conservation Genetics 8:249–260. Google Scholar
  • 4. J. C. Buchan, E. A. Archie, R. C. Van Horn, C. J. Moss, and S. C. Alberts . 2005. Locus effects and sources of error in noninvasive genotyping. Molecular Ecology Notes 5:680–683. Google Scholar
  • 5. G. C. Carter, E. C. Coen, L. M. Stenzler, and I. J. Lovette . 2006. Avian host DNA isolated from the feces of white-winged vampire bats (Diaemus youngi). Acta Chiropterologica 8:255–274. Google Scholar
  • 6. L. S. Eggert, J. E. Maldonado, and R. C. Fleischer . 2005. Nucleic acid isolation from ecological samples — animal scat and other associated materials. Methods in Enzymology 395:73–87. Google Scholar
  • 7. Y. Idaghdour, D. Broderick, and A. Korrida . 2003. Faeces as a source of DNA for molecular studies in a threatened population of great bustards. Conservation Genetics 4:789–792. Google Scholar
  • 8. K. Launhardt, C. Epplen, J. T. Epplen, and P. Winkler . 1998. Amplification of microsatellites adapted from human systems in faecal DNA of wild Hanuman langurs (Presbytis entellus). Electrophoresis 19:1356–1361. Google Scholar
  • 9. S. A. Miller, D. D. Dykes, and H. F. Polesky . 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16:1215. Google Scholar
  • 10. C. Miquel, E. Bellemain, C. Poillot, J. Bessière, A. Durand, and P. Taberlet . 2006. Quality indexes to assess the reliability of genotypes in studies using non-invasive sampling and multiple-tube approach. Molecular Ecology Notes 6:985–988. Google Scholar
  • 11. M. A. Murphy, L. P. Waits, and K. C. Kendall . 2003. The influence of diet on faecal DNA amplification and sex identification in brown bears (Ursus arctos). Molecular Ecology 12:2261–2265. Google Scholar
  • 12. F. Pompanon, A. Bonin, E. Bellemain, and P. Taberlet . 2005. Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics 6:847–859. Google Scholar
  • 13. S. J. Puechmaille and E. J. Petit . In press. Empirical evaluation of non-invasive capture-mark-recapture estimate of population size based on a single sampling session. Journal of Applied Ecology. Google Scholar
  • 14. S. Puechmaille, G. Mathy, and E. Petit . 2005. Characterization of 14 polymorphic microsatellite loci for the lesser horseshoe bat, Rhinolophus hipposideros (Rhinolophidae, Chiroptera). Molecular Ecology Notes 5:941–944. Google Scholar
  • 15. J. Z. Reed, D. J. Tollit, P. M. Thompson, and W. Amos . 1997. Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Molecular Ecology 6:225–234. Google Scholar
  • 16. H. W. Schofield 1996. The ecology and conservation of Rhinolophus hipposideros, the lesser horseshoe bat Ph.D. Thesis. University of Aberdeen. Aberdeen. 198. pp. Google Scholar
  • 17. P. Taberlet and J. Bouvet . 1992. Bear conservation genetics. Nature 358:197. Google Scholar
  • 18. P. Taberlet, L. P. Waits, and G. Luikart . 1999. Noninvasive genetic sampling: look before you leap. Trends in Ecology and Evolution 14:323–327. Google Scholar
  • 19. D. Tikel, D. Blair, and H. D. Marsh . 1996. Marine mammal faeces as a source of DNA. Molecular Ecology 5:456–457. Google Scholar
  • 20. S. Vege and G. F. Mccracken . 2001. Microsatellite genotypes of big brown bats (Eptesicus fuscus: Vespertilionidae, Chiroptera) obtained from their faeces. Acta Chiropterologica 3:237–244. Google Scholar
  • 21. S. K. Wasser, C. S. Houston, G. M. Koehler, G. G. Cadd, and S. R. Fain . 1997. Techniques for application of faecal DNA methods to field studies of Ursids. Molecular Ecology 6:1091–1097. Google Scholar
  • 22. J. D. Wehausen, R. R. Ramey, and C. W. Epps . 2004. Experiments in DNA extraction and PCR amplification from bighorn sheep feces: the importance of DNA extraction method. Journal of Heredity 95:503–509. Google Scholar
  • 23. J. Zinck, D. A. Duffield, and P. C. Ormsbee . 2004. Primers for identification and polymorphism assessment of Vespertilionid bats in the Pacific Northwest. Molecular Ecology Notes 4:239–242. Google Scholar
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.