PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 86 | 4 |

Tytuł artykułu

A performance comparison of sampling methods in the assessment of species composition patterns and environment–vegetation relationships in species-rich grasslands

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence that different sampling methods have on the results and the interpretation of vegetation analysis has been much debated, but little is yet known about how the spatial arrangement of samples affect patterns of species composition and environment–vegetation relationships within the same vegetation type. We compared three data sets of the same sample size obtained by three standard sampling methods: preferential, random, and systematic. These different sampling methods were applied to a study area comprising of 36 ha of intermittently wet Molinia meadows. We compared the performance of the three methods under two management categories: managed (extensively mown) and unmanaged (abandoned for 10 years). A total of 285 vegetation-plots were sampled, with 95 plots recorded per sampling method. In preferential sampling, we sampled only patches of vegetation with an abundance of indicator species of the habitat type, while random and systematic plots were positioned independently from the researcher by using GIS. The effect of each sampling method on the patterns of species composition and species–environment relationships was explored by redundancy analysis and the significance of effects was tested by the randomization test. Preferential sampling revealed different patterns of species composition than random and systematic sampling methods. Random and systematic sampling methods have resulted in broader vegetation variability than with preferential sampling method. Preferential sampling revealed different relationship between soil parameters and species composition in contrast to random and systematic sampling methods. Although we have not found significant differences in vegetation–environment relationships between random and systematic sampling methods, random sampling revealed a more robust correlation of species data to soil factors than preferential and systematic sampling methods. Intentional restriction of vegetation variation sampled preferentially may be detrimental to statistical inference in studies of species composition patterns and vegetation–environment relationships.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

86

Numer

4

Opis fizyczny

Article 3561 [15p.],fig.,ref.

Twórcy

autor
  • Department of Vegetation Ecology, University of Wrocław, Przybyszewskiego 63, 51-148 Wroclaw, Poland
  • MTA Centre for Ecological Research, Institute of Ecology and Botany, Alkotmany 2–4, 2163 Vacratot, Hungary
autor
  • Department of Vegetation Ecology, University of Wrocław, Przybyszewskiego 63, 51-148 Wroclaw, Poland
  • Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wroclaw, Poland
autor
  • Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wroclaw, Poland

Bibliografia

  • 1. Bourdeau PF. A test of random versus systematic ecological sampling. Ecology. 1953;34:499–512. https://doi.org/10.2307/1929722
  • 2. Greig-Smith P. Quantitative plant ecology. Berkley, CA: University of California Press; 1983. https://doi.org/10.1126/science.144.3626.1562-b
  • 3. Kenkel NC, Juhász-Nagy P, Podani J. On sampling procedures in population and community ecology. Vegetatio. 1989;83(1):195–207. https://doi.org/10.1007/BF00031692
  • 4. Braun-Blanquet J. Pflanzensoziologie. Grundzüge der Vegetationskunde. Wien: Springer- Verlag; 1964. https://doi.org/10.1007/978-3-7091-8110-2
  • 5. Ewald J. A critique for phytosociology. J Veg Sci. 2003;14(2):291–296. https://doi.org/10.1111/j.1654-1103.2003.tb02154.x
  • 6. Dengler J, Chytrý M, Ewald J. Phytosociology. In: Jørgensen SE, Fath BD, editors. Encyclopedia of ecology. Vol. 4. Oxford: Elsevier; 2008. p. 2767–2779.
  • 7. Holeksa J, Woźniak G. Biased vegetation patterns and detection of vegetation changes using phytosociological databases. A case study in the forests of the Babia Góra National Park (the West Carpathians, Poland). Phytocoenologia. 2005;35(1):1–18. https://doi.org/10.1127/0340-269X/2005/0035-0001
  • 8. Roleček J, Chytrý M, Hájek M, Lvončík S, Tichý L. Sampling design in large-scale vegetation studies: do not sacrifice ecological thinking to statistical purism! Folia Geobot. 2007;42(2):199–208. https://doi.org/10.1007/BF02893886
  • 9. Schaffers A. Soil, biomass, and management of semi-natural vegetation – part II. Factors controlling species diversity. Plant Ecol. 2002;158(2):247– 268. https://doi.org/10.1023/A:1015545821845
  • 10. Hájek M, Hájková P. Environmental determinants of variation in Czech Calthion wet meadows: a synthesis of phytosociological data. Phytocoenologia. 2004;34(1):33–54. https://doi.org/10.1127/0340-269X/2004/0034-0033
  • 11. Zelnik I, Čarni A. Wet meadows of the alliance Molinion and their environmental gradients in Slovenia. Biologia. 2008;63(2):187–196. https://doi.org/10.2478/s11756-008-0042-y
  • 12. Zelnik I, Čarni A. Plant species diversity and composition of wet grasslands in relation to environmental factors. Biodivers Conserv. 2013;22(10):2179–2192. https://doi.org/10.1007/s10531-013-0448-x
  • 13. Chiarucci A. To sample or not to sample? That is the question … for the vegetation scientist. Folia Geobot. 2007;42(2):209–216. https://doi.org/10.1007/BF02893887
  • 14. Rédei T, Botta-Dukát Z, Csiky J, Kun A, Tóth T. On the possible role of local effects on the species richness of acidic and calcareous rock grasslands in northern Hungary. Folia Geobot. 2003;38(4):453–467. https://doi.org/10.1007/BF02803252
  • 15. Cachovanová L, Hájek M, Fajmonová Z, Marrs R. Species richness, community specialization and soil–vegetation relationships of managed grasslands in a geologically heterogeneous landscape. Folia Geobot. 2012;47(4):349–371. https://doi.org/10.1007/s12224-012-9131-3
  • 16. Merunková K, Chytrý M. Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol. 2012;213(4):591–602. https://doi.org/10.1007/s11258-012-0024-6
  • 17. Turtureanu PD, Palpurina S, Becker T, Dolnik C, Ruprecht E, Sutcliffe LME, et al. Scale- and taxon-dependent biodiversity patterns of dry grassland vegetation in Transylvania. Agric Ecosyst Environ. 2014;182:15–24. http://doi.org/10.1016/j.agee.2013.10.028
  • 18. Palpurina S, Chytrý M, Tzonev R, Danihelka J, Axmanová I, Merunková K, et al. Patterns of fine-scale plant species richness in dry grasslands across the eastern Balkan Peninsula. Acta Oecol. 2015;63:36–46. http://doi.org/10.1016/j.actao.2015.02.001
  • 19. Chytrý M, Hennekens SM, Jiménez-Alfaro B, Knollová I, Dengler J, Jansen F, et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl Veg Sci. 2016;19(1):173–180. https://doi.org/10.1111/avsc.12191
  • 20. Chytrý M. Phytosociological data give biased estimates of species richness. J Veg Sci. 2001;12(3):439–444. https://doi.org/10.1111/j.1654-1103.2001.tb00190.x
  • 21. Diekmann M, Kühne A, Isermann M. Random vs non-random sampling: effects on patterns of species abundance, species richness and vegetation–environment relationships. Folia Geobot. 2007;42(2):179–190. https://doi.org/10.1007/BF02893884
  • 22. Michalcová D, Lvončík S, Chytrý M, Hájek O. Bias in vegetation databases? A comparison of stratified-random and preferential sampling. J Veg Sci. 2011;22(2):281– 291. https://doi.org/10.1111/j.1654-1103.2010.01249.x
  • 23. Mörsdorf MA, Ravolainen VT, Støvern LE, Yoccoz NG, Jónsdóttir IS, Bråthen KA. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities. PeerJ. 2015;3:e815. https://doi.org/10.7717/peerj.815
  • 24. Lájer K. Statistical tests as inappropriate tools for data analysis performed on non-random samples of plant communities. Folia Geobot. 2007;42(2):115–122. https://doi.org/10.1007/BF02893878
  • 25. Botta-Dukát Z, Kovács-Láng E, Rédei T, Kertész M, Garadnai J. Statistical and biological consequences of preferential sampling in phytosociology: theoretical considerations and a case study. Folia Geobot. 2007;42(2):141–152. https://doi.org/10.1007/BF02893880
  • 26. Lepš J, Šmilauer P. Subjectively sampled vegetation data: don’t throw out the baby with the bath water. Folia Geobot. 2007;42(2):169–178. https://doi.org/10.1007/BF02893883
  • 27. Økland RH. Wise use of statistical tools in ecological field studies. Folia Geobot. 2007;42(2):130–140. https://doi.org/10.1007/BF02893879
  • 28. Rudmann-Maurer K, Weyand A, Fischer M, Stöcklin J. The role of land use and natural determinants for grassland vegetation composition in the Swiss Alps. Basic Appl Ecol. 2008;9(5):494–503. http://doi.org/10.1016/j.baae.2007.08.005
  • 29. Wellstein C, Otte A, Waldhardt R. Impact of site and management on the diversity of Central European grasslands. Agric Ecosyst Environ. 2007;122(2):203–210. https://doi.org/10.1016/j.agee.2006.12.033
  • 30. Pruchniewicz D, Żołnierz L. The influence of environmental factors and management methods on the vegetation of mesic grasslands in a central European mountain range. Flora. 2014;209(12):687–692. http://doi.org/10.1016/j.flora.2014.09.001
  • 31. Virtanen R, Oksanen J, Oksanen L, Razzhivin VY. Broad-scale vegetation–environment relationships in Eurasian high-latitude areas. J Veg Sci. 2006;17(4):519–528. https://doi.org/10.1111/j.1654-1103.2006.tb02473.x
  • 32. Hettenbergerova E, Hájek M, Zelený D, Jiroušková J, Mikulášková E. Changes in species richness and species composition of vascular plants and bryophytes along a moisture gradient. Preslia. 2013;85(3):369–388.
  • 33. Cochran WG. Sampling techniques. New York, NY: Wiley; 1977.
  • 34. Bhatta KP, Chaudhary RP, Vetaas OR. A comparison of systematic versus stratified-random sampling design for gradient analyses: a case study in subalpine Himalaya, Nepal. Phytocoenologia. 2012;42(3–4):191–202. https://doi.org/10.1127/0340-269X/2012/0042-0519
  • 35. Goedickemeier I, Wildi O, Kienast F. Sampling for vegetation survey: some properties of a GIS-based stratification compared to other statistical sampling methods. Coenoses. 1997;12(1):43–50.
  • 36. Hédl R. Is sampling subjectivity a distorting factor in surveys for vegetation diversity? Folia Geobot. 2007;42(2):191–198. https://doi.org/10.1007/BF02893885
  • 37. Hu X, Wu Z, Wu C, Ye L, Lan C, Tang K, et al. Effects of road network on diversiform forest cover changes in the highest coverage region in China: an analysis of sampling strategies. Sci Total Environ. 2016;565:28–39. https://doi.org/10.1016/j.scitotenv.2016.04.009
  • 38. Mohler CL. Effect of sampling pattern on estimation of species distributions along gradients. Vegetatio. 1983;54(2):97–102. https://doi.org/10.1007/BF00035144
  • 39. Podani J. Analysis of mapped and simulated vegetation patterns by means of computerized sampling techniques. Acta Bot Hung. 1984;30(3):419–441.
  • 40. Goslee SC. Behaviour of vegetation sampling methods in the presence of spatial autocorrelation. Plant Ecol. 2006;187(2):203–212. https://doi.org/10.1007/s11258-005-3495-x
  • 41. Lengyel S, Déri E, Magura T. Species richness responses to structural or compositional habitat diversity between and within grassland patches: a multi-taxon approach. PLoS One. 2016;11(2):e0149662. https://doi.org/10.1371/journal.pone.0149662
  • 42. Pawlak W. Atlas of Lower and Opole Silesia. Wrocław: University of Wrocław; 2008.
  • 43. Sykes JM, Horrill AD, Mountford MD. Use of visual cover assessments as quantitative estimators of some British woodland taxa. J Ecol. 1983;71(2):437–450. https://doi.org/10.2307/2259726
  • 44. Kennedy KA, Addison PA. Some consideration for the use of visual estimates of plant cover in biomonitoring. J Ecol. 1987;75(1):151–157. https://doi.org/10.2307/2260541
  • 45. Westhoff V, van der Maarel E. The Braun-Blanquet approach. In: Whittaker RH, editor. Classification of plant communities. The Hague: W. Junk; 1978. p. 289–399. https://doi.org/10.1007/978-94-009-9183-5_9
  • 46. Kącki Z. Comprehensive syntaxonomy of Molinion meadows in southwestern Poland. Acta Botaniczne Silesiaca, Monografie. 2007;2:1–134.
  • 47. Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: Wydawnictwo Naukowe PWN; 2001.
  • 48. Allen SE, editor. Chemical analysis of ecological materials. Oxford: Blackwell Scientific Publications; 1989.
  • 49. Radojević M, Bashkin VN. Practical environmental analysis. 2nd ed. Cambridge: Royal Society of Chemistry; 2006. https://doi.org/10.1039/9781847552662
  • 50. Swacha G, Kącki Z, Załuski T. Classification of Molinia meadows in Poland using a hierarchical expert system. Phytocoenologia. 2016;46(1):33–47. https://doi.org/10.1127/phyto/2016/0094
  • 51. Kočí M, Chytrý M, Tichý L. Formalized reproduction of an expert‐based phytosociological classification: a case study of subalpine tall‐forb vegetation. J Veg Sci. 2003;14(4):601–610. https://doi.org/10.1111/j.1654-1103.2003.tb02187.x
  • 52. Janišová M, Dúbravková D. Formalized classification of rocky Pannonian grasslands and dealpine Sesleria-dominated grasslands in Slovakia using a hierarchical expert system. Phytocoenologia. 2010;40(4):267–291. https://doi.org/10.1127/0340-269X/2010/0040-0444
  • 53. Anderson MJ, Ellingsen KE, McArdle BH. Multivariate dispersion as a measure of beta diversity. Ecol Lett. 2006;9(6):683–693. https://doi.org/10.1111/j.1461-0248.2006.00926.x
  • 54. Whittaker RH. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr. 1960;30(3):279–338. https://doi.org/10.2307/1943563
  • 55. Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129(2):271–280. https://doi.org/10.1007/s004420100716
  • 56. ter Braak CJF, Šmilauer P. Canoco reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Ithaca, NY: Microcomputer Power; 2002.
  • 57. Legendre P, Legendre L. Numerical ecology. Amsterdam: Elsevier; 1998.
  • 58. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Package “vegan”: Community Ecology Package. R package version 2.0-10 [Internet]. 2013 [cited 2017 Nov 20]. Available from: https://cran.r-project.org/web/packages/vegan/vegan.pdf
  • 59. Hothorn T, Hornik K, van de Wiel MA, Zeileis A. Coin: a computational framework for conditional inference [Internet]. 2013 [cited 2017 Nov 20]. Available from: https://cran.r-project.org/web/packages/coin/vignettes/coin.pdf
  • 60. ter Braak CJF, Šmilauer P. Canoco reference manual and user’s guide: software for ordination (version 5.0). Ithaca, NY: Microcomputer Power; 2012.
  • 61. Mirek Z, Piękoś-Mirkowa H, Zając A, Zając M, editors. Flowering plants and pteridophytes of Poland – a checklist. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2002.
  • 62. Hanski I. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos. 1982;38(2):210–221. https://doi.org/10.2307/3544021
  • 63. Shmida A, Ellner S. Coexistence of plant species with similar niches. Plant Ecol. 1984;58(1):29–55. https://doi.org/10.1007/BF00044894
  • 64. Økland RH. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Oslo: Botanical Garden and Museum; 1990. (Sommerfeltia, Supplement; vol 1).
  • 65. Smartt PFM, Grainger EA. Sampling for vegetation survey: some aspects of the behaviour of unrestricted, restricted, and stratified techniques. J Biogeogr. 1974;1(3):193–206. https://doi.org/10.2307/3037969
  • 66. Lepš J. Scale- and time-dependent effects of fertilization, mowing and dominant removal on a grassland community during a 15-year experiment. J Appl Ecol. 2014;51(4):978– 987. https://doi.org/10.1111/1365-2664.12255
  • 67. Pavlů L, Pavlů V, Gaisler J, Hejcman M, Mikulka J. Effect of long-term cutting versus abandonment on the vegetation of a mountain hay meadow (Polygono-Trisetion) in Central Europe. Flora. 2011;206(12):1020–1029. http://doi.org/10.1016/j.flora.2011.07.008
  • 68. Házi J, Bartha S, Szentes S, Wichmann B, Penksza K. Seminatural grassland management by mowing of Calamagrostis epigejos in Hungary. Plant Biosyst. 2011;145(3):699–707. https://doi.org/10.1080/11263504.2011.601339
  • 69. Rebele F, Lehmann C. Biological flora of Central Europe: Calamagrostis epigejos (L.) Roth. Flora. 2001;196(5):325–344. https://doi.org/10.1016/S0367-2530(17)30069-5
  • 70. Szymura M, Szymura TH. Soil preferences and morphological diversity of goldenrods (Solidago L.) from south-western Poland. Acta Soc Bot Pol. 2013;82(2):107–115. https://doi.org/10.5586/asbp.2013.005
  • 71. Weber E, Jakobs G. Biological flora of Central Europe: Solidago gigantea Aiton. Flora. 2005;200(2):109–118. http://doi.org/10.1016/j.flora.2004.09.001
  • 72. Kącki Z, Michalska-Hejduk D. Assessment of biodiversity in Molinia meadows in Kampinoski National Park based on biocenotic indicators. Pol J Environ Stud. 2010;19(2):351–362.
  • 73. Sardans J, Peñuelas J. Potassium: a neglected nutrient in global change. Global Ecology and Biogeography. 2015;24(3):261–275. https://doi.org/10.1111/geb.12259
  • 74. Smart SM, Clarke RT, van de Poll HM, Robertson EJ, Shield ER, Bunce RGH, et al. National-scale vegetation change across Britain: an analysis of sample-based surveillance data from the countryside surveys of 1990 and 1998. J Environ Manage. 2003;67(3):239– 254. https://doi.org/10.1016/S0301-4797(02)00177-9
  • 75. Grabherr G, Reiter K, Willner W. Towards objectivity in vegetation classification: the example of the Austrian forests. Plant Ecol. 2003;169(1):21–34. https://doi.org/10.1023/A:1026280428467
  • 76. Ruskule A, Nikodemus O, Kasparinskis R, Prižavoite D, Bojāre D, Brūmelis G. Soil– vegetation interactions in abandoned farmland within the temperate region of Europe. New Forests. 2016;47(4):587–605. https://doi.org/10.1007/s11056-016-9532-x
  • 77. Vandvik V, Birks HJB. Partitioning floristic variance in Norwegian upland grasslands into within-site and between-site components: are the patterns determined by environment or by land-use? Plant Ecol. 2002;162(2):233–245. https://doi.org/10.1023/A:1020322205469
  • 78. Sebastiá MT. Role of topography and soils in grassland structuring at the landscape and community scales. Basic Appl Ecol. 2004;5(4):331–346. https://doi.org/10.1016/j.baae.2003.10.001

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ddd2ce3a-1cdd-42d7-9ba6-8ddeac860e16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.