Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2018 | 64 | 3 |

Tytuł artykułu

Phytochemical characterisation and bioactive properties of Solanum sodomaeum L. fruits at two stages of maturation

Treść / Zawartość

Warianty tytułu

Języki publikacji



Introduction: Solanum sodomaeum L. has been observed to have several medicinal properties, in particular, in the treatment of several types of human skin cancer. Objective: The influence of the maturation stage of S. sodomaeum fruits on the total lipid contents, fatty acid profiles, essential oil yields and compositions, as well as the antibacterial and antioxidant activities of the essential oils, was investigated. Methods: The fatty acid and essential oil constituents were identified using gas chromatography (GC) and GC–mass spectrometry (GC–MS). The antioxidant properties of essential oil and vegetal oil were assessed using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging and reducing power assays. The antibacterial ac-tivity of essential oil was tested using the disc diffusion assay for resistance in human pathogenic bacteria. Results: Mature fruits showed higher total lipid content (17%) and were characterised by polyunsaturated fatty acids (53.87%), represented mainly by linoleic acid (53.11%). Similar yields of essential oils were detected for immature (0.43%) and mature (0.45%) fruits. Tetrahydronaphthalene (41.79%) was detected as the major essential oil component at the immature stage versus dihydrocoumarin pentane (18.27%), hexadecanoic acid (17.43%) and 2-undecanone (13.20%) in mature fruits. The DPPH test showed that essential oils had better antioxidant properties; however, the vegetal oils showed better performance in the reducing power assay. Moreover, the essential oil of S. sodomaeum mature fruits was active against bacterial strains. Conclusions: S. sodomaeum fruits could be a valuable source of natural antioxidants and antibacterial agents.









Opis fizyczny



  • Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
  • Department of Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Bizerte, Tunisia
  • Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
  • Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria BP 901, Hammam-Lif 2050, Tunisia
  • Department of Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Bizerte, Tunisia
  • Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria BP 901, Hammam-Lif 2050, Tunisia
  • Unit of Support for Research and Technology, Transfer Technopole of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
  • Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria BP 901, Hammam-Lif 2050, Tunisia
  • Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria BP 901, Hammam-Lif 2050, Tunisia


  • Al Sinani SSS, Eltayeb EA. The steroidal glycoalkaloids solamargine and solasonine in Solanum plants. S Afr J Bot 2017; 112:253-69. doi:
  • Lee MH, Cheng JJ, Lin CY, Chen YJ, Lu MK. Precursor-feeding strategy for the production of solanine, solanidine and solasodine by a cell culture of Solanum lyratum. Process Biochem 2007;42:899-903. doi:
  • Maurya A, Gupta S, Negi S, Srivastava SK. pHzone-refining centrifugal partition chromatography for preparative isolation and purification of steroidal glycoalkaloids from Solanum xanthocarpum. J Sep Sci 2009; 32:3126-32. doi:
  • Friedman M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum) and jimson weed (Datura stramonium) seeds. J Chromatogr A 2005; 1054:143-55. doi:
  • Jouzier E. Solanacées médicinales et philatélie. Bull Soc Pharm Bordeaux 2005; 144:311-32.
  • Cham BE, Meares HM. Glycoalcaloids from Solanum sodomaeum are effective in the treatment of skin cancers in man. Cancer Lett 1987; 36:111-8. doi:
  • Ono M, Nishimura K, Suzuki K, Fukushima T, Igoshi K, Yoshimitsu H et al. Steroidal glycosides from the underground parts of Solanum sodomaeum. Chem Pharm Bull 2006; 54(2):230-3. doi:
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Phys 1959; 37:911-7. doi:
  • Cecchi G, Biasini S, Castano J. Methanolyse rapide des huiles en solvant. Note de laboratoire. Rev Fr Corps Gras 1985; 4:163-164.
  • Lafferty FW, Stauffer DB. Wiley registry of mass spectral data. 6th ed. Mass Spectrometry Library Search System Bench-Top/PBM, Version 3.10d. Newfield, UK. Palisade, 1994.
  • Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed. Carol Stream, IL. Allured Publishing Corporation, 2007.
  • König WA, Hochmuth DH, Joulain D. Terpenoids and related constituents of essential oils. Hamburg. Library of Mass Finder, Institute of Organic Chemistry, 2001.
  • Rios JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol 2005; 100:80-4. doi:
  • Hanato T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chem Pharm Bull 1988; 36:1090-1097. doi:
  • Oyaizu M. Studies on products of browning reaction: antioxidative activity of products of browning reaction. Jpn J Nutr Diet 1986; 44:307-315. doi:
  • Glew RH, Ayaz FA, Millson M, Huang HS, Chuang LT, Sanz C et al. Changes in sugars, acids and fatty acids in naturally parthenocarpic date plum persimmon (Diospyros lotus L.) fruit during maturation and ripening. Eur J Lipid Sci Technol 2005; 221:113-118. doi:
  • Schulz M, Borges GSC, Gonzaga LV, Seraglio Olivo SKT, Azevedo IS, Nehring P et al. Chemical composition, bioactive compounds and antioxidant capacity of juçara fruit (Euterpe edulis Martius) during ripening. Food Res Int 2015; 77:125-131. doi:
  • Tlili N, Tir M, Benlajnef H, Khemiri S, Mejri H, Rejeb S et al. Variation in protein and oil content and fatty acid composition of Rhus tripartitum fruits collected at different maturity stages in different locations. Ind Crops Prod 2014; 59:197-201. doi:
  • El Arem A, Flamini G, Saafi EB, Issaoui M, Zayene N, Ferchichi A et al. Chemical and aroma volatile compositions of date palm (Phoenix dactylifera L.) fruits at three maturation stages. Food Chem 2011; 127:1744-1754. doi:
  • Msaâda K, Hosni K, Ben Taarit M, Chahed T, Hammami M, Marzouk B. Changes in fatty acid composition of coriander (Coriandrum sativum L.) fruit during maturation. Ind Crops Prod 2009; 29:269-274. doi:
  • Finley JW, Shahidi F. The chemistry, processing and health benefits of highly unsaturated fatty acids: an overview. In: John WJ, Shahidi F, eds. Omega-3 fatty acids, chemistry, nutrition and health effects. Washington. American Chemical Society, 2001:258-279.
  • Carvalho IS, Teixeira MC, Brodelius M. Fatty acids profile of selected Artemisia ssp. plants: health promotion. LWT Food Sci Technol 2011; 44:293-8. doi:
  • Kauffman WC, Kennedy GG. Relationship between trichome density in tomato and parasitism of Heliothis spp. (Lepidoptera: Noctuidae) eggs by Trichogramma spp. (Hymenoptera: Trichogrammatidae). Environ Entomol 1989; 18:698-704. doi:
  • Vicedo B, Flors V, Leyva MD, Finiti I, Kravchuk Z, Real MD et al. Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Mol Plant Microbe Interact 2009; 22:1455-65. doi:
  • Llorens E, Vicedo B, Lopez MM, Lapena L, Graham JH, García-Agustín P. Induced resistance in sweet orange against Xanthomonas citri subsp. citri by hexanoic acid. Crop Prot 2015; 74:77-84. doi:
  • Richard H. Connaissance de la nature des arômes. In: Richard H, Multon JL, eds. Les arômes alimentaires, Partie I, Généralités, Sciences et techniques agro-alimentaires. Paris. Lavoisier TEC and DOC-Apria, 1992.
  • Sacchetti G, Maietti S, Muzzoli MV, Scaglianti M, Manfredini S, Radice M et al. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 2005; 91:621-32. doi:
  • Marino M, Bersani C, Comi G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int J Food Microbiol 2001; 67:187-95. doi:
  • Dhouioui M, Boulila A, Chaabane H, Saïd Zina M, Casabianc H. Seasonal changes in essential oil composition of Aristolochia longa L. ssp. paucinervis Batt. (Aristolochiaceae) roots and its antimicrobial activity. Ind Crops Prod 2016; 83:301-6. doi:
  • Chu YH, Chang CL, Hsu HF. Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 2000; 80:561-5. doi:<561::AIDJSFA574>3.0.CO;2-#
  • Zhang Y, Yang L, Zu Y, Chen X, Wang F, Liu F. Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chem 2010; 118(3):656-62. doi:
  • Omar KA, Shan L, Wang YL, Wang X. Stabilizing flaxseed oil with individual antioxidants and their mixtures. Eur J Lipid Sci Technol 2010;112(9):1003-11. doi:
  • Hazzit M, Baaliouamer A, Veríssimo AR, Faleiro ML, Miguel MG. Chemical composition and biological activities of Algerian Thymus oils. Food Chem 2009; 116:714-21. doi:
  • Peschel W, Sanchez-Rabaneda F, Diekmann W, Plescher A, Gaetzia A, Gartzia I et al. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem 2006; 97:137-50. doi:
  • Fruhwirth GO, Wenzl T, El-Toukhy R, Wagner FS, Hermetter A. Fluorescence screening of antioxidant capacity in pumpkin seed oils and other natural oils. Eur J Lipid Sci Technol 2003; 105:266-74. doi:
  • Latif S, Anwar F. Aqueous enzymatic sesame oil and protein extraction. Food Chem 2011; 125:679-84. doi:
  • Głoniak P, Łos R, Skalicka-Wozniak K, Widelski J, Burczyk J, Malm A. Activity of Crithmum maritimum L. (Apiaceae) against Gram-positive bacteria. Lublin. Annales Universitatis Mariae Curie-Sklodowska, 2006.
  • Dob T, Dahmane D, Benabdelkader T, Chelghoum C. Studies on the essential oil composition and antimicrobial activity of Thymus algeriensis Boisset Reut. Int J Aromather 2006; 16:95-100. doi:
  • Kivrak I, Duru ME, Öztürk M, Mercan N, Harmandar M, Topçu G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem 2009; 116:470-9. doi:

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.