PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 12 | 5 |

Tytuł artykułu

Micropropagation of Allium neapolitanum Cirillo

Treść / Zawartość

Warianty tytułu

PL
Mikrorozmnażanie Allium neapolitanum Cirillo

Języki publikacji

EN

Abstrakty

EN
Allium neapolitanum is a valuable species of snow-white flowers, which is suitable for cultivation in flowerbeds, rock gardens as well as in containers. Whole buds of Allium neapolitanum were excised from bulbs in the beginning of October and then they were cultured on Murashige and Skoog (MS) medium containing 2 mg BA·dm⁻³ and 0.1 mg NAA·dm⁻³ for shoot initiation. After several passages on the same medium for shoot multiplication, bases of shoots were placed for 2 subcultures on MS medium supplemented with BA or 2-iP in concentration of 2 or 5 mg·dm⁻³ separately or in combination with NAA in concentration of 0.1 or 1 mg·dm⁻³ to obtain multiplication. MS medium without growth regulators was used as a control. The best results were obtained on the medium supplemented with 5 mg BA·dm⁻³ and 0.1 mg NAA·dm⁻³. On average 5.7 shoots regenerated from 1 shoot base during 12 weeks. Three types of auxins, IAA, IBA and NAA in concentration of 0.5 mg·dm⁻³, were used for rooting. It was observed that NAA enhanced root formation but reduced roots length. The best quality rooted shoots were obtained on medium supplemented with 0.5 mg·dm⁻³ IAA. The survival rate of the plantlets under ex vitro condition was 70% after 4 weeks.
PL
Allium neapolitanum to cenny gatunek o ozdobnych śnieżnobiałych kwiatach, nadający się do uprawy na rabatach, skalniakach i w pojemnikach. Do badań wykorzystano całe pąki Allium neapolitanum, które izolowano z cebul na początku października i wykładano na pożywkę Murashige i Skooga (MS) zawierającą 2 mg BA·dm⁻³ i 0,1 mg NAA·dm⁻³ w celu inicjacji pędów. Po kilku pasażach namnażania na tej samej pożywce pobierano podstawę pędów, które kultywowano w ciągu 2 pasaży na pożywce MS uzupełnionej BA lub 2iP w stężeniu 2 lub 5 mg·dm⁻³ pojedynczo lub łącznie z NAA w stężeniu 0,1 lub 1 mg·dm⁻³. Kontrolę stanowiła pożywka MS bez regulatorów wzrostu. Najlepsze wyniki namnażania pędów uzyskano na pożywce z dodatkiem 5 mg BA·dm⁻³ i 0,1 mg NAA·dm⁻³, na której z jednej podstawy pędu otrzymano 5,7 pędów po 12 tygodniach kultury. Do ukorzeniania pędów zastosowano trzy auksyny: IAA, IBA i NAA w stężeniu 0,5 mg·dm⁻³. W obecności NAA uzyskano największą liczbę korzeni, lecz były one najkrótsze. Ukorzenione pędy najlepszej jakości otrzymano na pożywce uzupełnionej 0,5 mg·dm⁻³ IAA. Rośliny przenoszone do podłoża do warunków ex vitro przyjmowały się w 70%.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

12

Numer

5

Opis fizyczny

p.193-206,fig.,ref,

Twórcy

  • Institute of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin, 58 Leszczynskiego Str. 20-068 Lublin, Poland
autor
  • Institute of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin, 58 Leszczynskiego Str. 20-068 Lublin, Poland

Bibliografia

  • Abo El-Nil M.M., 1977. Organogenesis and embryogenesis in callus cultures of garlic (Allium sativum L.). Plant Sci. Lett. 9, 259–264.
  • Bekheet S.A., 2004. Micropropagation of garlic (Allium sativum L.). Ann. Agric. Sci (Cairo) 49(1), 223–232.
  • Brault M., Maldiney R., 1999. Mechanisms of cytokinin action. Plant Physiol. Biochem. 37, 403–412.
  • Cho Y.C., Moon J.S., Song J.Y., Jeong B.R., 2007. Development of micropropagation methods of shallot (Allium cepa var. ascalonicum Backer). Kor. J. Hort. Sci. Tech. 25(4), 322–327.
  • De Hertogh A., Le Nard M., 1993. De physiology of flowers bulbs. Elsevier, Amsterdam, 187–200.
  • Debergh P., Standaert-de Metsenaere P., 1976. Neoformation of bulbs in Allium porrum L. cultured in vitro. Sci. Hort. 5, 11–12.
  • Dunstan D.I., Short K.C., 1977. Improved growth of tissue cultures of the onion, Allium cepa. Physiol. Plant. 41, 70–72.
  • Evenor D., Levi-Nissim A., Afgin L., Lilien-Kipnis H., Watad A.A., 1997a. Regeneration of plantlets and bulblets from explants and callus of Allium aflatunense cultivars and selection from indigenous Israeli Allium ampeloprasum. Acta Hort. 430, 325–330.
  • Evenor D., Lilien-Kipnis H., Watad A.A. Raungian P., 1997b. Micropropagation of ornamental Allium: aflatunense and ampeloprasum. Acta Hort. 447, 135–138.
  • Gantait S., Mandal N., Bhattacharyya S., Das P.K., 2009. In vitro mass multiplication with genetic clonality in elephant garlic (Allium ampeloprasum L.). J. Crop Weed 5, 100–104.
  • George E.F., Puttock D.J.M., George H.J., 1987. Plant culture media. Vol. 1. Formulations and uses. Exegetics Ltd., Edington, Westbury, England.
  • George E.F., Hall M.A., De Klerk G.J., 2008. Plant propagation by tissue culture, 3rd edn. Springer, The Netherlands, pp104–204.
  • Haque M.S., Wada T., Hattori K., 1998. Efficient plant regeneration in garlic through somatic embryogenesis from root tip explants. Plant Prod. Sci. 1, 216–222.
  • Haque M., Wada T., Hattori K., 2000. Garlic roots for micropropagation through in vitro bulblet formation. Acta Hort. 520, 45–52.
  • Havranek P., Novak F.J., 1973. The bud formation in the callus cultures of Allium sativum. L. Z. Pflanzenphysiol. 68, 308–318.
  • Hidayat M. 2005. In vitro plant regeneration and bulblet formation of shallots (Allium ascalonicum L.) ‘Sumenep’. Acta Hort. 688, 251–257.
  • Inagaki N., Matsunaga H., Kanechi M., Maekawa S., 1994. Allium giganteum R. 2. Embryoid and plantlet regeneration through the anther culture of Allium giganteum R. Sci. Rep. Fac. Agric. Kobe Univ. 21(1), 23–30.
  • Inagaki N., Matsunaga H., Kanechi M., Maekawa S., Terabun M., 1992. In vitro micropropagation of Allium giganteum R. 1. Callus and shoot formation, and regeneration of plantlets through in vitro culture of emerged young leaves. Sci. Rep. Fac. Agric. Kobe Univ. 20(1), 47–53.
  • Kim K., Jang Y., Nam S., Choi I., Bang J., 2006. Multiple shoot regeneration and bulblet formation through meristem culture of garlic (Allium sativum L.) ‘Godang’. Kor. J. Hort. Sci. Tech. 24(1), 37–42.
  • Kuderová A., Hejátko J., 2009. Spatiotemporal aspect of cytokinin-auxin interaction in hormonal regulation of the root meristem. Plant Signal. Behav. 4, 156–157.
  • Ma Y., Wang H., Zhang C., Kang Y., 1994. High rate of virus-free plantlet regeneration via garlic scape-tip culture. Plant Cell Rep. 14,65–68.
  • Makowska Ż., Kotlińska T., 2001. Elaboration of optimal conditions for micropropagation and cryopreservation of garlic (Allium sativum L.). Veget. Crops Res. Bull. 54, 19–23.
  • Mehta J., Syedy M., Upadhyay D., Soni P., SharmaS., Khamora N., 2013. An efficient metod for micropropagation of garlic (Allium sativum L.) by somatic embryogenesis and artificial seed preparation with somatic embryo. IJPAES 3(2), 85– 89, online at www.ijpaes.com
  • Mohamed-Yasseen Y., Splittstoesser W.E., 1992. Regeneration of onion (Allium cepa) bulbs in vitro. Plant Growth Reg. Soc. of American Quarterly, 20(2), 76–82.
  • Mohamed-Yasseen Y., Splittstoesser W.E., Litz R.E., 1994. In vitro shoot poliferation and production of sets from garlic and shallot. Plant Cell Tiss. Org. Cult. 36(2), 243–248.
  • Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–479.
  • Nagakubo T., Nagasawa A., Ohkawa H., 1993. Micropropagation of garlic through in vitro bulblet formation. Plant Cell Tiss. Org. Cult. 32(2), 175–183.
  • Pandey R., Chandel K.P.S., Rao R.S., 1992. In vitro propagation of Allium tuberosum Rottl. Ex Spreng. by shoot proliferation. Plant Cell Rep. 11, 211–214.
  • Quintana-Sierra M.E., Robledo-Paz A., Santacruz-Varela A., Gutierrez-Espinosa M.A., CarrilloCastaneda G., Cabrera-Ponce J.L., 2005. In vitro regeneration of onion (Allium cepa L.) plants. Agrociencia (Montecillo), 39(6), 647–655.
  • Ružiü Dj.V., Vujoviü T.I., 2008. The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.). Hort. Sci. 35(1), 12–21.
  • Seabrook J.E.A., 1994. In vitro propagation and bulb formation of garlic. Acta Hort. 688, 155–158.
  • Song Z., Kedong D., Chenxing C., Shurong C., Jinli H., 2002. Efficient plant regeneration via root tip culture of Allium tuberosum Rottl. Ex Spreng. Acta Hort. Sinica 29(2), 141–144.
  • Stenlid G., 2006. Cytokinins as inhibitors of root growth. Physiol Plant. 56(4), 500–506.
  • Subotiü A., Jevremoviü S., Trifunoviü M., Radojeviü L., 2006. In vitro regeneration of Allium aflatunense by somatic embryogenesis. Acta Hort. 725(1), 165–167.
  • Šušek A., Jawornik B., Bohanec B., 2002. Factors affecting direct organogenesis from flower explants of Allium giganteum. Plant Cell Tiss. Org. Cult. 68, 27–33.
  • Tubiü L., Zdravkoviü-Koraü S., Mitiü N., Milojeviü M., ûaliü-Dragosavac û., Vinterhalter B., 2011. Plant regeneration from transverse stalk sections of chive plants. Rom. Biotech. Lett. 16(1), 55–59.
  • Wawrosch C., Malla P.R., Kopp B., 2001. Micropropagation of Allium wallichii Kunth, a threatened medicinal plant of Nepal. In Vitro Cell. Dev. Biol. Plant 37(5), 555–557.
  • Werner T., Motyka V., Strnad M., Schmulling T., 2001. Regulation of plant growth by cytokinin. PNAS USA 98(18), 10487–10492.
  • Wróblewska K., 2012. The influence of adenine and benzyladenine on rooting and development of Fuchsia hybrida cuttings. Acta Agrobot. 65(4), 101–108.
  • Xu P., Su Q., Wang X., Li J., 2005. Studies induced adventitious shoots via tissue culture in garlic inflorescence and on the dynamics of endogenous polyamine contents during shooting. Acta Hort. 688, 269–272.
  • Zakizadeh S., Kaviani B., Onsinejad R., 2013. In vitro rooting of amaryllis (Hippeastrum johnsonii), a bulbous plant, via NAA and 2-iP. Ann. Biol. Res. 4 (2), 69–71.
  • Ziv M., Hertz N. Biran Y., 1983.Vegetative reproduction of Allium ampeloprasum L in vivo and in vitro. Israel J. Bot. 32,1–9.
  • Ziv M., Lilien-Kipnis L.H., 1997. The inflorescence stalk: a source of highly regenerative explants for micropropagation of geophytes. Acta Hort. 447, 107–111.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dd4821e5-a357-4150-93a3-88948157bc59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.