PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 5 |

Tytuł artykułu

Effects of indole-3-acetic acid and auxin transport inhibitors on the style curvature of three Alpinia species (Zingiberaceae)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of indole-3-acetic acid (IAA) and the auxin transport inhibitors 2, 3, 5-triiodobenzoic acid (TIBA) and 1-N-naphthylphthalamic acid (NPA) on the style curvature of Alpinia platychilus, A. blepharocalyx, and A. mutica were studied. Exogenous IAA stimulated the style curvature movement of the anaflexistylous morph (ana-morph) and cataflexistylous morph (cata-morph) of three Alpinia species in light, but had no effect in the dark. Treatment with auxin efflux inhibitors (NPA and TIBA) before flower opening did not affect the first curvature of the two morphs in darkness; however, the subsequent second movement of the ana-morph was enhanced by NPA or TIBA, while the second movement of the cata-morph was completely inhibited. After the first curvature, NPA and TIBA treatments at 06:00 hours (before significant illumination) and 11:00 hours (after the styles were illuminated for 4 h) increased the second curvature of the ana-morph, but significantly decreased that of the catamorph. The effect at 06:00 hours was more significant than the effect at 11:00 hours. These results suggested that auxin and auxin transport affected the style curvature in a different way in the two morphs, and two morphs had distinct mechanisms for style movement at different times.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

5

Opis fizyczny

p.2019-2025,fig.,ref.

Twórcy

autor
  • Key Lab of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, The Chinesse Academy of Sciences, 666303 Yunnan, China
  • Department of Life Science, Simao Teacher's College, 665000 Puer, Yunnan, China
autor
  • Department of Life Science, Simao Teacher's College, 665000 Puer, Yunnan, China
autor
  • Department of Life Science, Simao Teacher's College, 665000 Puer, Yunnan, China
autor
  • Department of Life Science, Simao Teacher's College, 665000 Puer, Yunnan, China
autor
  • Department of Life Science, Simao Teacher's College, 665000 Puer, Yunnan, China
autor
  • Key Lab of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, The Chinesse Academy of Sciences, 666303 Yunnan, China
autor
  • Key Lab of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, The Chinesse Academy of Sciences, 666303 Yunnan, China

Bibliografia

  • Casal JJ, Yanovsky MJ (2005) Regulation of gene expression by light. Int J Dev Biol 49:501–511
  • Claßen-Bockhoff R, Pischtschan E (2000) The explosive style in Marantaceae—preliminary results from anatomic studies. In: Spatz HC, Speck T (eds) Plant Biomechanics. Thieme, Stuttgart, pp 515–521
  • Cluis CP, Mouchel CF, Hardtke CS (2004) The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J 38:332–357
  • Cox MCH, Benschop JJ, Vreeburg RAM, Wagemaker CAM, Moritz T, Peeters AJM, Woesenek LACJ (2004) The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiol 136:2948–2960
  • Cui XL, Wei RC, Huang RF (1996) A study on the breeding system of Amomum tsao-ko. In: Proceedings of the Second Symposium on the Family Zingiberaceae. Zhongshan University Press, Guangzhou, pp 288–296
  • Edelmann HG (2001) Lateral redistribution of auxin is not the means for gravitropic differential growth of coleoptiles: a new model. Physiol Plantarum 112:119–126
  • Friml J, Wiśniewska J, Benkavá E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809
  • Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial arabidopsis tissue. Plant Cell 12:757–770
  • Hayes AB, Lippincott JA (1981) The timing of and effect of temperature on auxin-induced hyponastic curvature of the bean primary leaf blade. Am J Bot 68:305–311
  • Jazen DH (1968) Reproductive behavior in the Passifloraceae and some of its pollinators in Central America. Behavior 32:33–48
  • Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150
  • Kim L, Kircher S, Toth R, Adam E, Schafer E, Nagy F (2000) Lightinduced nuclear import of phytochrome-A: GFP fusion protein is differentially regulated in transgenic tobacco and Arabidopsis. Plant J 22:125–133
  • Klips RA, Snow AA (1997) Delayed autonomous self-pollination in Hibiscus laevis (Malvaceae). Am J Bot 84:48–53
  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of lightinhibited hypocotyl elongation in Arabidopsis thaliana. Z Pflanzenphysiol 100:147–160
  • Krieger KG (1978) Early time course and specificity of auxin effects on turgor movement of the bean pulvinus. Planta 140:107–109
  • Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577
  • Li QJ, Xu ZF, Kress WJ, Xia YM, Zhang L, Deng XB, Gao JY, Bai ZL (2001) Flexible style that encourages outcrossing. Nature 40:432
  • Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004) Convergence of signaling pathways in the control of differential cell growth in arabidopsis. Dev Cell 7:193–204
  • Luo YL, Li QJ (2010) Effects of light and low temperature on the reciprocal style curvature of Flexistylous Alpinia Species (Zingiberaceae). Acta Physiologia Plantarum 32:1229–1234
  • Matsushita T, Mochizuki N, Nagatani A (2003) Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 424:571–574
  • Moore I (2002) Gravitropism: lateral thinking in auxin transport. Curr Biol 12:452–454
  • Muday GK (2001) Auxins and tropisms. J Plant Growth Regul 20:226–243
  • Paciorek T, Friml J (2006) Auxin signaling. J Cell Sci 119:1199–1202
  • Paul LK, Khurana JP (2008) Phytochrome-mediated light signaling in plants: emerging trends. Physiol Mol Biol Plants 14:9–22
  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122:481–490
  • Schwuchow J, Michalke W, Hertel R (2001) An auxin transport inhibitor interferes with unicellular gravitropism in protonemata of the moss Ceratodon purpureus. Plant Biol 3:357–363
  • Seed L, Vaughton G, Ramsey M (2006) Delayed autonomous selfing and inbreeding depression in the Australian annual Hibiscus trionum var. vesicarius (Malvaceae). Aust J Bot 54:27–34
  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, Doležal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191
  • Sun S, Gao JY, Liao WJ, Li QJ, Zhang DY (2007) Adaptive significance of flexistyly in Alpinia blepharocalyx (Zingiberaceae): a hand-pollination experiment. Ann Bot 99:661–666
  • Tanaka H, Dhounukshe P, Brever PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754
  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176
  • Tian Q, Reed JW (2001) Molecular links between light and auxin signaling pathways. J Plant Growth Regul 20:274–280
  • Went FW, Thimann KV (1937) Phytohormone. Macmillan, New York, pp 1–294
  • Woodward AW, Bartel B (2005) Auxin: regulation, action and interaction. Ann Bot 95:707–735
  • Zhang N, Hasenstein KH (2000) Distribution of expansins in graviresponding maize roots. Plant Cell Physiol 41:1305–1312

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dcf7ea6c-8f90-4bd4-933a-978405f00f08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.