PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 4 |

Tytuł artykułu

Effect of daily consumption of a variety of grains on some of type 2 diabetic complications

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Diabetes mellitus is associated with oxidative stress, evidence of inflammatory markers and other mechanisms, which may contribute to accelerated atherosclerosis. This study was designed to find the effect of the consumption of whole grains, cereals and dried legumes used in different forms on the levels of blood glucose, serum lipid profiles, antioxidant enzymes activity, C-reactive protein (CRP) and microalbuminuria. Eighty-four type 2 diabetic patients participated in this study. They were divided into eight groups; for one week each of the groups consumed different forms of the tested food, which is intended to function as a beneficial adjunct in the nutritional setting of the patients. Certain food items, which replaced equivalent amount of breakfast carbohydrate, were used as food supplements, namely: unsweetened boiled whole wheat (Belila 1), unsweetened boiled partial decorticated wheat (Belila 2), germinated fenugreek seeds, grinded fenugreek seeds, soaked boiled edible lupine, roasted chickpea. Group 7 and group 8 consumed also a defined amount of biscuits made from whole wheat flour and either grinded fenugreek or chickpea. Weight, height and waist circumference of the subjects were recorded, and body mass index (BMI) was calculated. Blood glucose, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and very low-density lipoprotein cholesterol (VLDL-C), triglyceride levels were determined. Lipid peroxide (oxidative LDL-C), superoxide dismutase (SOD), glutathione peroxidase enzyme (GPx) activity, CRP and urinary microalbumin levels were measured as well. After intervention diabetic patients showed different percent decreases in the mean levels of the fasting and postprandial glucose, within a range of -1.97 to 20.8 and -10.23 to 35.22, respectively. A significant difference at p<0.05 and p<0.01 was detected between group 2 and 8. Mean levels of TC and LDL-C decreased significantly among patients of group 2 only at p<0.01. VLDL-C and triglyceride levels decreased in all groups with different percent, a significant difference at p<0.05 p<0.01 was found also among group 2 and 8. HDL-C increased within a range of 0.76–24.58%, and a significant difference at 0.05 was detected in group 6 and 7. Lipid peroxide level decreased among the first seven groups and significantly among group 8. GPx activity showed higher improvement compared to SOD activity, five groups showed a significant difference in the SOD activity after the end of the intervention period at p<0.05–0.01. CRP and microalbuminuria improved in all groups, the greater decrease was –56.06% and -52.54% in group 1 and group 7, respectively. In conclusion, the results of this study showed that daily consumption of whole grains, cereals and legumes by the diabetic patients had a beneficial effect on improving the glycemic control that is showed by decreasing their fasting and postprandial blood glucose, also in decreasing serum lipids markers. Positive findings were also detected as regards their antioxidant and anti-inflammatory properties, which could alleviate some complications such as microalbuminuria.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

58

Numer

4

Opis fizyczny

p.503-509,ref.

Twórcy

  • Department of Food Science and Nutrition, National Research Centre, Dokki, Cairo, Egypt
autor

Bibliografia

  • 1. Allam M.H., Chemical composition & nutritional value of fenugreek seeds during germination. Ann. Agri. Sci., 1987, 32, 1538––1551.
  • 2. Anderson P.H., Berret S., Patterson D.S., Glutathione peroxidase activity in erythrocytes and muscle in cattle and sheep and its relationship to selenium. J. Comp. Pathol., 1978, 88, 181–189.
  • 3. Barham D., Trinder P., An improved for the determination of blood glucose by oxidase system. Analyst, 1972, 97, 142–145.
  • 4. Baynes J.W., Role of oxidative stress in development of complications in diabetes. Diabetes, 1991, 40, 405–412.
  • 5. Berg A.H., Scherr P.E., Adipose tissue, inflammation and cardiovascular disease. Cir. Res., 2005, 96, 939–949.
  • 6. Chetana V., Turbidimetry assay for measurement of CRP in human serum or plasma. Immunol. Infect. Dis., 1996, 6, 139–144.
  • 7. Draper H.H., Hadley M., Malondialdehyde determination as index of lipid peroxide. Methods Enzymol., 1990, 186, 421–431.
  • 8. Duranti M., Grain legume proteins and nutraceutical properties. Fitoterapia, 2006, 77, 67–82.
  • 9. Facchini F.S., Humphreys M.H., DoNascimento C.A., Abbasi F., Reaven G.M., Relation between insulin resistance and plasma concentrations of lipid hydroperoxides, carotenoids and tocopherols. Am. J. Clin. Nutr., 2000, 72, 776–779.
  • 10. Finley P.R., Schifman R.B., Williams R.J., Lichti D.A., Cholesterol in high-density lipoprotein. Use of Mg/dextrane sulfate in its enzymatic measurement. Clin Chem., 1978, 24, 931.
  • 11. Friedewald W.T., Levy R., Fredrickson D.S., Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18, 499–502.
  • 12. Gillery P., Monboissa J.C., Mauquart F.X., Borel J.P., Does oxygen free radical increase formation explain long term complications of diabetes mellitus. Med. Hypothesid., 1989, 29, 47–50.
  • 13. Gupta A., Gupta R., Lai B.J., Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double blind placebo controlled study. Ass. Phys. India., 2001, 49, 1057–1061.
  • 14. Hanada K., Hirano H., Interaction of a 43-KDa receptor-like protein with a 4-KDa hormone-like peptide soybean. Biochemistry, 2004, 28, 12105–1212.
  • 15. Hasanain B., Mooradian A.D., Antioxidant vitamins and their influence in diabetes mellitus. Curr. Diab. Rep., 2002, 2, 448–456.
  • 16. Hunt J.V., Smith C.C., Wolff S.P., Autooxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes, 1990, 39, 1420–1424.
  • 17. Jager A., Van Hinsberg V.W.M., Kostene P.J., C-reactive protein and soluble vascular cell adhesion molecule 1 are associated with elevated urinary albumin excretion but do not explain its link with cardiovascular risk. Arterioscler Thromb. Vasc. Biol., 2002, 22, 593–598.
  • 18. Jellife D.B., The assessment of the nutritional status of the community. World Health Organization. Geneva Monograph., 1966, 35, 63–69.
  • 19. Jenkins D.J.A., Wolever T.M., Jenkins A.L., Starchy foods and glycemic index. Diabetes Care, 1988, 11, 149–159.
  • 20. Jones J.M., Reick M., Adams J., Fulcher G., Marquat L., Becoming proactive with the whole–grains message. Nutr. Today, 2004, 39, 10–17.
  • 21. Kalousova M., Fialova L., Skrha J., Zima T., Soukupova J., Malbohan I.M., Stipek S., Oxidative stress, inflammation and autoimmune reaction in type 1 and type 2 diabetes mellitus. Prague Med. Rep., 2004, 105, 21–28.
  • 22. Kantor L.S., Variyam J.N., Allshouse J.E., Putnam J.J., Lin B.H., Choose a variety of grains daily, especially whole grains: A challenge for consumers. J. Nutr., 2001, 131, 4735–4865.
  • 23. Kesavulu M.M., Rao B.K., Giri R., Vijaya J., Subramanyam G., Apparao C., Lipid peroxidation and antioxidant enzyme status in type 2 diabetics with coronary heart disease. Diab. Res. Clin. Pract., 2001, 53, 33–39.
  • 24. Kuller L.H., Tracy R.P., Shaten J., Meilahn E.N., Relation of C‑‑reactive protein and coronary heart disease in MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am. J. Epidemiol., 1996, 144, 537–547.
  • 25. Lang V., Vaugelade P., Bernard F., Darcy-Vrillon B., Almowitch C., Slama G., Duèe P.H., Bornet F.R., Euglycemic hyperinsulinemic clamp to assess posthepatic glucose appearance after carbohydrate loading. 1. Validation in pigs. Am. J. Clin. Nutr., 1999, 69, 1174–1182.
  • 26. Lowe G.D.O, Yarnel J.W.G., Rumley A., Bainton D., Sweetnam P.M., C-reactive protein, fibrin D-dimer, and incident ischaemic heart disease in the speed well study. Art. Thromb. Vasc. Biol., 2001, 21, 603–610.
  • 27. McCarty M.F., Nutraceutical resources for diabetes prevention- an update. Med. Hypotheses, 2005, 64, 151–158.
  • 28. Nestel P., Cehun M., Chronopoulos A., Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin and triacylglycerol concentrations. Am. J. Clin. Nutr., 2004, 79, 390–395.
  • 29. Parthiban A., Vijayalingan S., Shanmugasundaram K.R., Mohan R., Oxidative stress and the development of diabetic complications antioxidants and lipid peroxidation in erythrocytes and cell membrane. Cell Biol. Inter., 1995, 19, 987–993.
  • 30. Pisanti F.A., Frascatore S., Papaccio G., Superoxide dismutase activity in the BB rat: a dynamic time-course study. Life Sci., 1988, 43, 1625–1632.
  • 31. Qi L., Hu F.B., Dietary glycemic load, whole grains and systemic inflammation in diabetes: the epidemiological evidence. Curr. Opin. Lipidol., 2007, 18, 4–8.
  • 32. Qi L., Rimm E., Liu S., Rifai N., Hu F.B., Dietary glycemic index, glycemic load, cereal fiber and plasma adiponectin concentration in diabetic men. Diabetes, 2005, 28, 1022–1028.
  • 33. Raju J., Gupta D., Rao A.R., Yadava P.K., Baquer N.Z., Trigonellafoenum graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol. Cell. Biochem., 2001, 224, 45–51.
  • 34. Ridcker P.M., Hennekens C.H., Buring J.E., Rifai N., C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med., 2000, 342, 836–843.
  • 35. Rowley K., O Deo K., Best J.D., Association of albuminuria and metabolic syndrome. Curr. Diab. Rep., 2003, 3, 80–86.
  • 36. Salonen J.T., Nyyssonen K., Tuomanen T.P., Maenpaa P.H., Korpela H., Kaplan G.A., Lynch J., Helmrich S.P., Salonen R., Increased risk of non-insulin dependent diabetes mellitus at low plasma vitamin E concentrations: a 4 year follow up study in men. Br. Med. J., 1995, 311, 1124–1127.
  • 37. Slavin J., Whole grains: Protection against cardiovascular disease, diabetes and cancer. SAJCN., 2005, 49,(Suppl.), 51.
  • 38. Slavin J.L., Martini M.C., Jacobs D.R.J., Marquart L., Plausible mechanisms for the protectiveness of whole grain. Am. J. Clin. Nutr., 1999, 70(Suppl.), 4595–4635.
  • 39. Smith R.A., Potential edible lupine poisoning in humans. Vet. Hum. Toxicol., 1987, 29, 444–445.
  • 40. Stec J.J., Silbershatz H., Tofler G.H., Matheny T.H., Sutherland P., Lipinska I., Massaro J.M., Wilson P.F., Muller J.M., D’Agostino R.B. Sr., Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham offspring population. Circulation, 2000, 102, 1634–1638.
  • 41. Stehbens W.E., The epidemiological relationship of hypercholesterolemia, hypertension, diabetes mellitus and obesity to coronary heart disease and atherogenesis. J. Clin. Epidemiol., 1990,43, 733–741.
  • 42. Stehouwer C.D.A., Gall M.A., Twisk J.W.R., Knudsen E., Emeis J.J., Parving H.H., Increase urinary albumin excretion, endothelial dysfunction and chronic low-grade inflammation in type 2 diabetes. Diabetes, 2002, 51, 1157–1165.
  • 43. Suttle N.F., McMurray C.H., Use of erythrocyte copper: zinc superoxide dismutase activity and hair fleece copper concentrations in the diagnosis of hypocuprosis in ruminants. Res. Vet. Sci., 1983, 35, 47–52.
  • 44. Trinder P., Determination of glucose oxidase with blood using glucose oxidase with an alternative oxygen receptor. Ann. Clin. Biochem., 1969, 6, 24.
  • 45. Venn B.J., Mann J.I., Cereal grains, legumes and diabetes. Eur. J. Clin. Nutr., 2004, 58, 1443–1461.
  • 46. Verma S., Hungwang C., Weisel R.D., Badiwala M.V., Li S.H., Fedak P.W.M., Li R.K., Mickel D.A.G., Hyperglycemia potentiates the proatherogenic effects of C-reactive protein: Reversal with rosiglitazone. J. Mol. Cell Cardiol., 2003, 35, 417–419.
  • 47. Vincent A.M., Russell J.W., Low P., Feldman E.L., Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev., 2004, 25, 612–628.
  • 48. Wahlefeld A.W., Triglycerides determination after enzymatic hydrolysis. 1974, in: Methods of Enzymatic Analysis, vol. 4 (ed. H.U. Bergmeyer). Academic Press, New York, NY., pp. 1881–1885.
  • 49. Walker J.D., Close C.F., Jones C.F., Jones S.L., Rafftery M., Keen H., Viberti G., Osterby R., Glomerular structure in type-1 (insulin-dependent) diabetic patients with normo- and microalbuminuria. Kidney Int., 1992, 41, 741–748.
  • 50. Wolever T.M.S., Tsihlias E.B., McBurney M.I., Le N.A., Long –term effect of reduced carbohydrate or increased fiber intake on LDL particle size and HDL composition in subject with type 2 diabetes. Nutr. Res., 2003, 23, 15–26.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dcd7f82e-0ceb-4fcb-8e58-4a231b19957a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.