Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 60 | 4 |

Tytuł artykułu

Effect of camel milk on the activities of ATPases in normal and streptozotocin-diabetic rats

Treść / Zawartość

Warianty tytułu

Języki publikacji



Diabetes mellitus is the world’s largest endocrine disorder resulting in multiple aetiologies, involving metabolic disorders of carbohydrate, fat and protein. All forms of diabetes are due to a decrease in the circulating concentration of insulin (insulin deficiency) and a decrease in the response of peripheral tissues to insulin i.e., insulin resistance. According to the World Health Organization projections, the prevalence of diabetes is likely to increase by 35% by the year 2025. In this study, the streptozotocin (STZ)-induced diabetic rats, the activities of membrane-bound adenosine triphosphatases (ATPases) are altered in erythrocytes and in tissues such as liver and kidney. Albino Wistar rats were rendered diabetic by a single intraperitoneal injection of STZ (40 mg/kg body weight). Diabetic rats exhibited significantly (p<0.05) increased levels of plasma glucose and decreased levels of plasma insulin. The activities of total ATPases, (Na++K+)-ATPase, Ca2+-ATPase and Mg2+-ATPase were significantly (p<0.05) decreased in diabetic control rats. Control and diabetic rats were treated with camel milk (250 mL/day) for a period of 45 days. A group of diabetic rats were also treated with glibenclamide (600 μg/kg body weight). After the treatment period, a significant (p<0.05) decrease in the levels of glucose and increase in the levels of plasma insulin and the activities of ATPases in erythrocytes and tissues were observed in diabetic rats treated with camel milk. A similar effect is also observed in the glibenclamide treated rats. But, control rats treated with camel milk did not show any significant (p<0.05) effect in any of the parameters studied. Our study shows that camel milk has the potential to restore the deranged activities of membrane-bound ATPases in STZ-diabetic rats. Further detailed investigation is necessary to find out its mechanism of action.

Słowa kluczowe








Opis fizyczny



  • Community Health Sciences Department, College of Applied Medical Sciences, King Saud University, P.O.Box 10219, Riyadh 11433, Kingdom of Saudi Arabia


  • 1. Agrawal R.P., Kochar D.K., Sahani M.S., Tuteja F.C., Ghouri S.K., Hypoglycemic activity of camel milk in streptozotocin induced diabetic rats. Int. J. Diab. Dev. Countries, 2004, 24, 47–49.
  • 2. Agrawal R.P., Sahani M.S., Tuteja F.C., Ghouri S.K., Sena D.S., Gupta R., Kochar D.K., Hypoglycemic activity of camel milk in chemically pancreatectomized rats–An experimental study. Int. J. Diab. Dev. Countries., 2005, 25, 75–79 .
  • 3. Agrawal R.P., Swami S.C., Beniwal R., Kochar D.K., Sahani M.S., Tuteja F.C., Ghouri S.K., Effect of raw camel milk on glycemic control, risk factors and diabetes quality of life in type- 1 diabetes: a randomised prospective controlled study. J. Camel Pract. Res., 2003a, 10, 45–50.
  • 4. Agrawal R.P., Swami S.C., Beniwal R., Kochar D.K., Sahani M.S., Tuteja F.C., Ghouri S.K., Effect of camel milk on glycemic control, lipid profile and diabetes quality of life in type-1 diabetes: a randomised prospective controlled cross over study, Indian J. Anim. Sci., 2003b, 73, 1105–1110.
  • 5. Al-Nozha M.M., Al-Maatouq M.A., Al-Mazrou Y.Y., Al-Harthi S.S., Arafah M.R., Khalil M.Z., Khan N.B., Al-Khadra A., Al- Marzouki K., Nouh M.S., Abdullah M., Attas O., Al-Shahid M.S., Al-Mobeiree A., Diabetes mellitus in Saudi Arabia. Saudi Med. J., 2004, 25, 1603–1610.
  • 6. Baldini P., Incerpi S., Lambert-Gardini S., Spinedi A., Luly P., Membrane lipid alterations and Na+-pumping activity in erythrocytes from IDDM and NIDDM subjects. Diabetes, 1989, 38, 825–831.
  • 7. Baynes J.W., Thorpe S.R., The role of oxidative stress in diabetic complications. Curr. Opin. Endocrinol., 1997, 3, 277–284.
  • 8. Beg Von Bahr O.U., Lindrom H., Zaidid Z.H., Jornvall H., Characteristic of camel milk protein, rich in proline, identifies a new beta casein fragment. Regul. Pept., 1989, 15, 55–61.
  • 9. Bonting S.L., Sodium-potassium activated adenosine-triphosphatase and cation transport. 1970, in: Membrane and Iron Transport (ed. C. Bittar). Willey Intercience, London, pp. 25–28.
  • 10. Boyle J.P., Honeycutt A.A., Narayan K.M. et al., Projection of diabetes burden through 2050: Impact of changing demography and disease prevalence in the US. Diab. Care, 2001, 24, 1936–1940.
  • 11. Breitling L., Insulin and anti-diabetes activity of camel milk. J. Camel Pract. Res., 2002, 9, 43–45.
  • 12. Burcelin R., Eddouks M., Maury J., Kande J., Assan R., Girard J., Excessive glucose production, rather than insulin resistance, accounts for hyperglycemia in recent-onset streptozotocin-diabetic rats. Diabetologia., 1995, 38, 283–290.
  • 13. Burgi W., Briner M., Franken N., Kessler A.C.H., One step sandwich enzyme immunoassay for insulin using monoclonal antibodies. Clin. Biochem., 1988, 21, 311–314.
  • 14. Clausen T., Everts M.E., Regulation of the Na, K-pump in skeletal muscle. Kidney Int., 1989, 35, 1–13.
  • 15. Evans W.H., Membrane adenosine triphosphatase of E. coli activation by calcium ions inhibition by monovalent cations. J. Bacteriol., 1969, 100, 914.
  • 16. Fiske G.H., Subbarrow Y., The colorimetric determination of phosphorus. J. Biol. Chem., 1925, 66, 375–400.
  • 17. Gupta S., Phipps K., Ruderman N.B., Differential stimulation of Na+ pump activity by insulin and nitric oxide in rabbit aorta. Am. J. Physiol., 1996, 270, H1287–H1293.
  • 18. Hjerten S., Pan H., Purification and characterization of two forms of a low-affinity Ca2+-ATPase from erythrocyte membranes. Biochim. Biophys. Acta, 1983, 728, 281–288.
  • 19. Hope-Gill HF., Nanda V., Stimulation of calcium ATPase by insulin, glucagon, cyclic AMP and cyclic GMP in triton X-100 extracts of purified rat liver plasma membrane. Horm. Metab. Res., 1979, 11, 698–700.
  • 20. Kjeldsen K., Braendgaard H., Sidenius P., Larsen J. S., Norgaard A., Diabetes decreases Na++K+ pump concentration in skeletal muscles, heart ventricular muscle, and peripheral nerves of rat. Diabetes, 1987, 36, 842–848.
  • 21. Jain S.K., Palmer M., The effect of oxygen radicals’ metabolites and vitamin E on glycosylation of proteins. Free Radic. Biol. Med., 1997, 22, 593–596.
  • 22. Jain S.K., Lim G., Lipoic acid decreases lipid peroxidation and protein glycosylation and increases (Na++K+)- and Ca2+-ATPase in high glucose-treated human erythrocytes. Free Radic. Biol. Med., 2000, 29, 1122–1128.
  • 23. Kameswararao B., Kesavulu M.M., Apparao C., Evaluation of antidiabetic effect of Momordica cymbalaria fruit in alloxandiabetic rats. Fitoterapia, 2003, 74, 7–13.
  • 24. Kuwahara Y., Yanagishita T., Konno N., Katagiri T., Changes in microsomal membrane phospholipids and fatty acids and in activities of membrane-bound enzyme in diabetic rat heart. Basic Res. Cardiol., 1997, 92, 214–222.
  • 25. La Celle P.R., Kirkpatrick F.H., Determinants of erythrocyte membrane elasticity. 1975, in: Erythrocyte Structure and Function (eds. G. Brewer Jr). A.R. Liss Inc., New York, p. 535.
  • 26. McDonough A.A., Geering K., Farley R.A., The sodium pump needs its β-subunit. FASEB J., 1990, 4, 1598–1605.
  • 27. Mehaia M.A., Hablas M.A., Abdel-Rahman K.M., El-Mougy S.A., Milk composition of Majaheim, Wadah and Hamra camels in Saudi Arabia. Food Chem., 1995, 52, 115–122.
  • 28. Mourelle M., Franco M.T., Erythrocyte defects precede the onset of CCl4 induced liver cirrhosis protection by silymarin. Life Sci., 1991, 48, 1083–1090.
  • 29. Muczynski K.A., Stahl W.L., Incorporation of dansylated phospholipids and dehydroergosterol into membranes using a phospholipid exchange protein. Biochemistry, 1983, 22, 6037–6048.
  • 30. Njomen G.B.S.N., Kamgang R., Soua P.R.N., Oyono J.L.E., Njikam N., Protective effect of methanol-methylene chloride extract of Terminalia glaucescens leaves on streptozotocin-induced diabetes in mice. Tropical J. Pharmaceut. Res., 2009, 8, 19–26.
  • 31. Ohnishi T., Suzuki T., Suzuki Y., Ozawa K., A comparative study of plasma membrane magnesium ion ATPase activity in normal, regenerating and malignant cells. Biochim. Biophys. Acta, 1982, 684, 67–74.
  • 32. Rajeswari P., Natarajan R., Nadler J.L., Kumar D., Kalra V.K., Glucose induces lipid peroxidation and inactivation of membrane associated ion-transport enzymes in human erythrocytes in vivo and in vitro. J. Cell Physiol., 1991, 149, 100–109.
  • 33. Ramesh B., Pugalendi K.V., Antioxidant role of umbelliferone in STZ-diabetic rats. Life Sci., 2006, 79, 306–310.
  • 34. Ramesh B., Pugalendi K. V., Effect of umbelliferone on cellular redox status in STZ-diabetic rats. World Wide Web J. Biol., 2005a, 9–1.
  • 35. Ramesh B., Pugalendi K. V., Impact of umbelliferone on erythrocyte redox status in STZ-diabetic rats. Yale. J. Biol. Med., 2005b, 78, 133–140.
  • 36. Ramesh B., Pugalendi K.V., Influence of umbelliferone on membrane- bound ATPases in streptozotocin-induced diabetic rats. Pharmacol. Rep., 2007, 59, 339–348.
  • 37. Richards-Williams C., Juan L., Kathleen C.H., Berecek, Schwiebert E.M., Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion. Purinergic Signal., 2008, 4, 393–405.
  • 38. Sabbadini R.A., Dahms A.S., Biochemical properties of isolated transverse tubular membranes. J. Bioenerg. Biomembr., 1989, 21, 163–213.
  • 39. Singh R., Annual report of National Research Center on Camel, Bikaner, India 2001, p. 50.
  • 40. Siems W.G., Hapner S.J., van Kuijk F.J., 4-Hydroxynonenal inhibits Na++K+-ATPase. Free Radic. Biol. Med., 1996, 20, 215–223.
  • 41. Szkudelski T., The mechanism of alloxan and streptozotocin action in β-cells of the rat pancreas. Physiol. Res., 2001, 50, 536–546.
  • 42. Trinder P., Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem., 1969, 6, 24.
  • 43. Unlucerci Y., Kocak H., Seferoglu G., BekpInar S., The effect of aminoquanidine on diabetes-induced inactivation of kidney (Na++K+)-ATPase in rats. Pharmacol Res., 2001, 44, 95–98
  • 44. Ver A., Szanto I., Banyasz T., Csermely P., Vegh E., Somogyi J., Changes in the expression of (Na++K+)-ATPase isoenzymes in the left ventricle of diabetic rat hearts: effect on insulin treatment. Diabetologia, 1997, 40, 1255–1262.
  • 45. Yagihashi S., Pathology and pathogenetic mechanisms of diabetic neuropathy. Diab. Metab. Rev., 1995, 11, 193–225.
  • 46. Wangoh J., What steps towards camel milk technology? Int. J. Anim. Sci., 1993, 8, 9–11.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.