PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Anaerobic digestion of microalgal biomass acutodesmus dimorphus (Turpin) P. Tsarenko as a substrate for biogas production

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It is only a matter of time for when fossil fuels will not be accessible at low cost, which is the major reason why it is obligatory for researchers to find an alternative feedstock to replace the currently stable position of fossil fuels in the world. The objective of this study was to review the potential of green microalgae Acutodesmus dimorphus (Turpin) P. Tsarenko, which can become the replacement for the commonly used raw materials for anaerobic digestion. Recent scientific focus has targeted the research of alternative renewable energy sources. Green microalgae are the alternative raw material for generating bioenergy due to high photosynthetic efficiency. Many modern solutions for cultivation systems of microalgae, maintenance, and harvesting techniques are currently under development all over the world. It is necessary to find the proper technology for algae cultivation and that will deal with all environmental and economic issues. The innovative process can provide the prerequisite scale for increasing commercial use of bioenergy from microalgae. The interim research results presented in this study show that microalgae are a suitable alternative material for biogas production in the method of anaerobic fermentation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.1497-1502,fig.,ref.

Twórcy

autor
  • Department of Regional Bioenergy, Faculty of European Studies and Regional Development, Slovak University of Agriculture, Nitra, Slovak Republic
  • Environmental Institute, Kos, Slovak Republic
autor
  • Department of Regional Bioenergy, Faculty of European Studies and Regional Development, Slovak University of Agriculture, Nitra, Slovak Republic
autor
  • BioRent, Sladkovicovo, Slovak RepublicBioRent, Sladkovicovo, Slovak Republic

Bibliografia

  • 1. MOBIN S., ALAM F. Biofuel Production from Algae Utilizing Wastewater, 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 2014.
  • 2. TSAI D.D.-W., CHEN P.H., RAMARAJ R. The potential of carbon dioxide capture and sequestration with algae, Ecological Engineering, Volume 98, 17, January 2017.
  • 3. RAMANAN R., KIM B.-H., CHO D.-H., OH H.-M., KIM H.-S. Algae-bacteria interactions: Evolution, ecology and emerging applications, Biotechnology Advances, 34 (1), 14, 2016.
  • 4. ABOMOHRA A. E.-F., JIN W., TU R., HAN S.-F., EID M., ELADEL H. Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives, Renewable and Sustainable Energy Reviews 64 596, 2016.
  • 5. KUMAR P., SHARMA P. K., SHARMA P. K., SHARMA D. Micro-algal Lipids: A Potential Source of Biodiesel, Journal of Innovations in Pharmaceuticals and Biological Sciences, 2 (2), 135, 2015.
  • 6. ADAMCZYK M., LASEK J., SKAWIŃSKA A. CO₂ biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana, Appl. Biochem. and Biotechnol., 179, 1248, 2016.
  • 7. NELSON V., STARCHER K. Introduction to renewable energy second edition, CRC Press, 2015.
  • 8. BRUTON T., LYONS H., LERAT Y., STANLEY M., RASMUSSEN M.B. A review of the potential of marine algae as a source of biofuel in Ireland. Dublin: Sustainable Energy Ireland; 88, 2009.
  • 9. ABDEL-RAOUF N., AL-HOMAIDAN A. A., IBRAHEEM I. B. M. Microalgae and wastewater treatment, Saudi Journal of Biological Sciences, 19 (3), 257, 2012.
  • 10. SARKAR O., AGARWAL M., KUMAR A. N., MOHAN S. V. Retrofitting hetrotrophically cultivated algae biomass as pyrolytic feedstock for biogas, bio-char and bio-oil production encompassing biorefinery. Bioresour. Technol. 178, 132, 2015.
  • 11. BRENNAN L., OWENDE P. Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products. Elsevier. doi:10.1016/j.rser.2009.10.009, 2009.
  • 12. MIAZEK K, LEDAKOWICZ S. Chlorophyll extraction from leaves, needles and microalgae: a kinetic approach. Int J Agric Biol Eng. 6, 107, 2013.
  • 13. MIYACHI S., IWASAKI I., SHIRAIWA Y. Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO₂ conditions, Photosynthesis Res 77, 139, 2003.
  • 14. JI M.K., YUN H.S. HWANG J.H., SALAMA E.S., JEON B.H., CHOI J. Effect of flue gas CO₂ on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production, Environ. Technol., 1, 2016.
  • 15. REN T. Primary Factors Affecting Growth of Microalgae Optimal Light Exposure Duration and Frequency, Graduate Theses and Dissertations, Paper 13793, 2014.
  • 16. XIAO T., FANXIANG K., YANG Y., XIAOLI S., MIN Z. Effects of Enhanced Temperature on Algae Recruitment and Phytoplankton Community Succession. China Environmental Science 2009. 29 (6), 578, 2009.
  • 17. LODISH H., BERK A., ZIPURSKY S. L., MATSUDAIRA P., BALTIMORE D., DARNELL J. Molecular Cell Biology, 4th edition, ISBN-10: 0-7167-3136-3, 2000.
  • 18. KLINTHONG W., YANG Y.-H., HUANG C.-H., TAN C.-S. A Review: Microalgae and Their Applications in CO₂ Capture and Renewable Energy, Aerosol and Air Quality Research, 15, 712, 2015.
  • 19. YING K., GILMOUR D.J., ZIMMERMAN W.B. Effects of CO₂ and pH on Growth of the Microalga Dunaliella salina, J Microb Biochem Technol 6, 167, 2014.
  • 20. HAAS A., GREGG A. K., SMITH J. E., ABIERI M. L., HATAY M., ROHWER F. Visualization of oxygen distribution patterns caused by coral and algae, PeerJ. 2013; 1, e106, 2013.
  • 21. GHASEMI Y., RASOUL-AMINI S., NASERI A.T., MONTAZERI-NAJAFABADY N., MOBASHER M. A., DABBAGH F. Microalgae biofuel potentials (Review). Appl. Biochem. Microbiol 2012, 48, 126, 2012.
  • 22. MURPHY F., DEVLIN G., DEVERELL R., MCDONNELL K. Biofuel production in ireland-an approach to 2020 targets with a focus on algal biomass, Energies, 6, (12), 6391, December 2013.
  • 23. MATSUI J., AMANO T., KOIKE Y., SAIGANJI A., SAITO H. Methane Fermentation of Seaweed Biomass, American institute of chemical engineers, 2006.
  • 24. ERTEM F.C., NEUBAUER P., JUNNE S. Environmental life cycle assessment of biogas production from marine macroalgal feedstock for the substitution of energy crops, Journal of Cleaner Production, 140 (2), 977, 2017.
  • 25. MUSSGNUG J.H., KLASSEN V., SCHLUTER A., KRUSE O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept, Journal of Biotechnology 150, 51, 2010.
  • 26. SHUKRI N.Z.M., ISMAIL H.N., CHAY T.C., JANI A.M.M. The Growth Performance of Freshwater Chlorella sp. and Scenedesmus sp. in Different Media, Journal of Applied Science and Agriculture, 9 (11) Special 2014, 119, 2014.
  • 27. MORENO-GARCIA L., ADJALLE K., BARNABE S., RAGHAVAN G.S.V. Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability, Renewable and Sustainable Energy Reviews, 76, 493, 2017.
  • 28. PILOTO-RODRIGUEZ R., SANCHEZ-BORROTO Y., MELO-ESPINOSA E.A., VERHELST S. Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview, Renewable and Sustainable Energy Reviews, 69, 833, 2017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dbf139af-e1c9-495d-b59c-b3978382f31c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.